
L---- ·------------- -----· -- - ··---

On Effective Transformations

of

Communicating Sequential Processes

A Thesis Submitted to

the F4Culty of Yamanashi University for

the Master's Degree

-Musha, Hiroyuki

March 19, -

.\

Contents

1. Introduction l

2. Preliminaries 3

2.1 Definitions of CSP 3

2.1.1 Overview o~ CSP 3

2.1.2 Formal Description of CSP 4

2.1.3 Examples of CSP Programs 8

2.2 Coroutines 13

2.3 Graph Theory 13

3. Overview of Transformation 15

4. T.arg.et .o.f T.r.ansformation: A Coroutine Language ASL 18

4.1 Auxiliary Variables 18

4. 2 Commands of ASL 20.

s. Algorithm for Transformation (1) 23

5.1 overview of the First Algorithm 23

5.2 Description of the First Algorithm

6. Algorithm for Transformation (2)

24

27

7. Algorithm for Transformation (3) 29

7.1 Conditions to be Satisfied 29

7.2 overview of the Third Algorithm .32

7.3 Description of the Third Algorithm 33

8. Comparison with Related works 36

8.1 Comparison with Katayam's Method 36'

8. 2 Comparison with Habermann and Nassi 's Method·. 37

8.3 comparison with Hagino's Method 38

9. Conclusion 40

Acknowledgement 41

References 42

- i -

1. _ Intrdduction

Distributed computing models are natural and powerful

systems 'for describing both concurrent and sequential computing

phenomen·a and they gain growing interests in connection with VLSI

technol~gy. The system of Communicating Sequential Processes,

which we call CSP in the following of this thesis, is one of

those models propos~d by C.A.R. Hoare in 141].

In CSP, input and output of processes are considered basic

primitive;s> • -Combineq with _nondeterminism, those primiti11es

provide us simple and transparent descriptions of algorithms.

Algorithms described in CSP, as they are, however, are not

e·fficiently executable under ·conyentional cornputiTrg environment.

Effective scheduling algorithms of processes are needed .

. In this the.sis, methods for transformation of descriptions

of algo.r.Lthms in CSP (CS.P pro.grams for short) into sequentially

executable programs are presented: Coroutines are set to the

target of the transformation and three di fferen.t algor i thsm for

transformation are described: the first algorithm is simple and

can be applied to general CSP programs but not efficient, the

other two,a-lgorithms can only be applied to restricted classes of
(

CSP programs but more efficient than the first .one. ThO$e

algorithms must contribute to the problem of scheduling· of

processes,

The rest of this thesis is organized as follows. In the next

chapter, definitions of CSP, coroutines and necessary concepts in

graph theory are given. Chapter 3 ove~views the algorithms for

transformation. In Chapter 4, syntax and semantics of the target

of transformation, a language. with ·a kind of coroutine facility,

is described. Chapter 5, 6 and 7 • show the algorithms for

- 1 -

transformation. In Chapter 8, we compare the method of

transformation taken in this thesis with other related works.

Conclusi6n is presented in Chapter 9.

'.

- 2 -

2. Preliminaries

In this chapter, preliminary concepts for discussions given

in the following chapters are defined, In 2.1, definitions of

CSP, their syntax and .semantics, are. given, definitions of

coroutines are given in 2.2, and 2.3 states definitions of terms

related to graph theory.

2.1 Definitions of CSP

In this section, definitions of CSP are given. At first

informal introductions are given, then. in the following section.,

we show their syntax and semantics rigorously, and in Section

2.1.3, examples of CSP programs are shown.

2.1.1 Overview of CSP

In this section, sysntax and semantics ?f CSP are informally

.described. A .CSP program is a collection P of processes, which

share no common variables at all and are supposed to be executed

concuLrently. Communication between two processes p and q of pis

expressed by the. input and output commands

q?v

and

p!e,

where e is an expression and v is a variable in which the

received value of the expression of e is assigned. Execution of

these commands are synchronous, i.e. p waits at "q?v" unti 1 q is

ready to output the message at "p!e" and vice versa.

Constituents of each process are commands based on

Dijkstra's guarded commands (14,15,25}, which can be classified

into two types: simple commands and structured commands. The

- 3 -

members of the simple commands are the assignment command, the

input command, the output command and the null command which does

nothing. Structured commands, alternative and repetitive

commands, are organized by a set of guarded commands and express

selective and repetitive execution.

A guarded command is executed when its guard does not fail.

An alternative command fails if all guards fail. A repetitive

command specifies as many iterations as possible .of its

constituent alternative commands, and it terminates when all

-g~ards fail.

An input command can appear in the end of a guard and is

~xecuted only when a corresponding output command is executed; it

is called an input guard. The input command fails if the process

specified is terminated; the execution suspends if the

corresponding process is not_ ready to output, which can result in
' .

deadlock. In recent papers (1,19,28,50] output guards are also

permitted, however, in the rest of this thesis output guards are

not supposed to appear in guards.

2.1.2 Formal Description of CSP

In this section, syntax and semantics of CSP are defined. At

first the whole sysntax is shown in terms of extended BNF, and

then, the meaning of each command is explaind. Examples of usage

of theses commands are in the next section.

The whole syntax of CSP is as follows:

<command> ::= <simple command>i<structured command>
<simple command> ::= <null command>!<assignment command>

!<input command>j<output command>
<structured command> ::= <alternative command>

!<repetitive command>
<null command> ::= skip
<command list> ::= {<declaration>; J <command>;}<command>

- 4 -

--- ------------------ ----- --- _______ , ___ --- . --- - -- -·--~---·-.. ---·- ---

<parallel command> ··= [<process>{! !<process>}]
<process> ::= <process label><command list>
<process label> ::= <empty>l<identifier>::

l<identifier>(<label subscript>{,<label subscript>})::
<label subscript> ::= <integer constant>j<range>
<integer constant> ::= <numeral>l<bound variable>
<bound variable> := <identifier>
<range> ::= <bound variable>:<lower bound> .. <upper bound>
<lower bound> ::= <integer constant>
<upper bound> ::= <integer_constant>

<assignment command> ::= <target variable>:=<expression>
<expression> ::= <simple expression>j<structured expression>

~ <structured expression> ::= <constructor>(<expression list>)
<constructor> ::= <identifier>j<empty> •
<expression list> : : = <empty.>·I <express ion> {,<expression>}
<target variable> ::= <simple variable>l<structured target>
<structured target> ::% <constructor>(<target variable list>)
<target variable list> ::= <empty>l<target variable>

{,<target variab+e>} • •

<input command> ::= <source>?<target variable>
<output command> ::= <destination>!<expression>
<source> ::~ <process name>
<destination> ::= <process name>
<process name> ::= <identifier>j<identifier>(<subscripts>)
<subscripts> ::= <integer expression>{,<integer expression>}

<repetitive command>. : : == *<al tei:nati ve command>
<alternative command> ::~ [<guardecl command>

.{□ <g·uarded command>})
<guarded command> ::= <guard>--><command list>

I (<range>{,<range>}}<guard>--><command list>
<guard> ::= <guard list>l<guard list>;<input command>

!<input command> •
<guard list> ::~ <guard element>{;<guard element>}
<guard ~lement> ::= <boolean expression>l<declaration~

A CSP program is a collection of disjoint processes each·of

which is organized by a list of commaods. Commands can be

classified into two types: structured commands and simple

commands. The members of simple commands are the null command,

the assignment command, the input command and the output command.

The members of structured commands are the alternative command

and the repetitive command.

A command specifiei the behavior of a device executing the

command and returns one of the two values "success" or "fail"

- 5 -

when it is executed. If the command is executed and returns

"success", it changes the states of the process (or the

processes) ~nvol ved. l'f t;he command returns "fail 11, the execution

of the whole system ab·orts.

A null command, ~hich is denoted by "skip", does nothing and

never fails.

An assignment command sr;>eci fies evaluation of its
'>

expression, and assignment of the denoted value to the target

variable. A simple targ,et variable ina_y have assigned to it a

simple or a structured value. A structured target variable my

have assigned tp it a structured value, -with the same

constructor. The effect of such assignment is to assign to ~ach

constituent simpler variable of the structured target the value

of the corresponding component of the structured value. Thus~ the

value denoted by the target variable, if evaluated aft~r a
. '

successful ~ssignment, is the same as the value denoted by the

expre~sion, as evaluated before the assignment.

An assignment fails if the value of its expression is

undefined, or if that value does not match the target variables,

in the following sense: A simple target variable matches any

value of its type. A structured target variable matches a

structured value, provided that:

(l) they have the same constructor,

(2) the target variable list is the same length as the list of

components of the value, and

(3) each target variable of the list matches the. correspondin~

component of the value list. A structured value with no

components is known as a ,, signal."

Input and output commands specify communication between two

- 6 -

processes. Communication' ~ccurs between two processes when

(1) an input command-in one process specifies as its source the

process name of the oth~r process;

(2) an output command iri the other process specifies as its

destination the proces~ _name of the first process; and

(3) the target variable of the input command matches the value

denoted by the expression of the ou~put command.

On these conditions, the input and output commands are said to

correspond. Commands ; • ·which correspond are executed

si~ultaneously, and their effect is to assign the value of the

expression of the output command to the target variable of the

input command.

An input command fails if its source is terminated. An

output command fails if its destination is terminated or if its

expres~ion is .unde:fi.ned.

The requirement of synchronization of input and output

commands means that the process which beco~e ready to communicate

first have to be delayed its execution until the corresponding

command in the other process also becomes ready, or the other

process terminates. It is possible that the delay will never be

ended, that is a deadlock.

A set of guarded commands constitutes an alter~~tive or a

repetitive command. A guarded command can be executed OflY if the

execution of its guard does not fail. Firsi its guard is executed

and then its command list is executed. A guard is e.xecuted by

execution of its constituent commands from left to righ_t. Boolean

expressions are evaluated: if it denotes false, the guard fails;

but an expression that denotes true has no effect. A declaration

introduces a fresh variable with a scope that extends from the

- 7 -

-·- -- ···-· - •· ,_ ... ··-········--·--·-----··-·-·····----··------- .. ---·

\

place of the declaration to the end of the·· 9uraded command. An

input command at the end of a guard is executed only if and when

a corresponding output command is executed.

An alternative command specifies execution of exactly one of

its constituent guarded commands. Consequ_ently, if all guards

fail, the alternative command fails. Otherwise an arbitrary one

with successfully executable guard is selected and execu~ed.
')·

A repetitive command specifies as many repetitions as

possible of its constituent-alternative commana:, Thus, when all

guards fail, the repetitive command terminates with no effeet,

with returning "success." Otherwise, the alternative command is

executed once and then the-whole repetitive command is executed

again. Consider a repetitive command when all its true guard list

end in an input guard. Such a command have to be delayed un-ti 1

either

{l) an output. command corresponding to one of the input guards

becomes ready, or

(2) all the sources named by the input guards have terminated.

In case (2), the repetitive command terminates. If neither event

ever occurs, the process fails in deadlock.

2.1.3 Examples of CSP Programs

In this section, examples of descriptions of algorithms in

CSP are shown.

(1) Subroutines (Procedures)

The following is an example of subroutines, which receives x

and y from proces~ X and returns (x div y) and (x mod y).

- 8 -

... ······· ·-· -·· ... -----

/* a solution of Knight's Tour in CSP */
[TRY(i:2 .. NSQ)::

1·1

board: (N, N) integer;
x, y, u, v, k: integer;
*[TRY(i-l)?(x,y,board) -->

k : • 1;
* [k<=8 -->

nextplace! (x,y,k);
nextplace?(u,v);
[l<=u;u<=8; l<=v;v<=B; board(u,v)•0 -->

board(u,v) :=_ i;
TRY(i+l) ! (u,v,board);
board (u,v) := 0;

0u<l;8<ui v<l;S<v; board(u,v)< >0 -->
skip

·] ;
k : = k+l

TRY(l)::
board: (N,N) integer;
j, k;integer
j : - 1;
*(j<=N -->

k : '"' 1;
*[k<=N -->

board(j,k) := 0;
k := k+l

] ;
j := j+l

] ;
j : = l;
*[j <= (N+l)/2 -->

k : "' j; •
*[k <= (N+l)/2 -->

board(j,k) := 1;

J ;

TRY (2) ! (j ,k,board);
board(j,k) := 0;
k := k+l

j := j+l

- 10 -

/* 8-Queens Problem in CSP*/
[TRY(i:l. .8)::

A: (1. .8) boolean; B: (2 .. 16) boolean;
c: (-7 .. 7} boolean; X: (1.. 8) integer;
*[TRY(i-l)?(A,B,C,X) -->

j:integer; j:=l;
* [j < = 8 ; A (j) ; B (i + j} ; C (i-j) -->

X(if :=-j;
A(j) := false;
B(i+j) .:• false;
C(i-j) :• false;
TRY (i + 1) ! (A, B , C, X) ;
A(j} := true;
B (i + j l : .,. true; ''
C(i-j) := true;
j : = j+l J)

11
TRY (0') : :

11

A: (1. .8) boolean; B: (2 •. 16)
C: (-7 .. 7) boolean; X: (l .. 8)

boolean;
integer;

i:integer;
i:=l; *[i<=8 -->
i:~2; *(i<~l6 -->
i:•-7;*[i<=7 -->
i:=l; *(i<=8 -->
TRY (1) ! (A,B,C,X)

A(i) :=true;
B (i) :-:true;
C(i) :=true;
X (i) ·:=0;

i:=i+l];
i:=i+l];
i:=i+l];
i:=i+l];

TRY (9) : :
A: (1. .8) boolean; B: (2 .. 16)
C:(-7 .. 7) boolean; X:(1..8)
*[TRY(8)?(A,B,c~x) --~

PRINT!X)

(5) Description of a Sorter

boolean;
integer;

The following program describes a sorter which sorts an •

array of integers.

- 11 -

.
,•,:•

11

11

/* a description of a sorter in CSP*/
sorter(i:l .. MAX) ::

num, ord, next, ~rdnext: integer;
sorter(i-l)?(num,~rd) -->

*(sorter(i-l)?{ne~t,ordnext) -->
(num>next ~->or~:= ord+l
num=next -~> skip
nurn<next -~> ordnext := ordnext+l

) ;
sorter (i+l) ·1 (next, ordnext)

] ; •

. source! (nurn,ord)

sorter(a) :: ~
nurn, ord, next, ordnext: integer;
source?(nurn,ord) -->

*[source(next,o~dnext) -->
[nurn>next -->· ord :~ ord+l
nurn=next --> skip
nurn<next --> ordnext := ordnext+l

) ;
sorter(l) ! (next,ordnext)

] ;
source! (nurn,ord)

source ::
a: (0~.MAX)integer; i, j, num, ord: integer;
i := 0;
*[i<=MAX; input?a(i) -)

sorter (0) ! (a'(i) ,0);

f;
i := i+l

j : = 0;
* (j< i- -->

sorter(i)?(num,ord);
a (ord) := num;
output!a(j);
j := j+l

J ;

- 12 -

2.2 Coroutines

A set of coroutines (11) is the target of transformation

explained in the following chapters. In this section, definitons

of courintes and semicoroutines (59}, a restricted kind of

coroutines, are given. The targ~t of our transformation, a

concrete language with coroutine facility, is described in

Chapter 4.

A coroutine is defined as a routine (subprogram) which has

the following two features:

(1) the values of the variables local to the routine are retained

between successive activations of the routine, and

(2) when the control reenters the routine, the execution resumes

at the point where i-t lef_t off last time.

A semicoroutine, a restricted kind of coroutines, is defined as a

routine which satisfies (1) and (2) above and, in ~ddition,

(3) a semicoroutine must be activated by a caller to wh-ich it

returns the control on completion of its task.

2.3 Graph Theory

In this section, terms in graph theory necessary to

understand the discussions given in the following chapte~s are

defined; definitions of the terms are due to (32].

A DIGRAPH D consists of a finite set V of POINTS and a

collection of ordered pairs of distinct points. Any such pair

(u,v) is called an ARC or DIRECTED LINE and will usually be

denoted by uv. The arc uv goes from u to v and is INCIDENT with u

and v. We also say that u is ADJACENT TO v and vis ADJACENT FROM

u. The OUTDEGREE od{v) of a point vis the number of points

adjacent from it, and the INDEGREE id(v) is the number adjacent

- 13 -

to ·it.

A (DIRECTED) WALK in a digraph is an alternating sequence of

points and arcs, v0, xl, vl, ... , xN, vN in w~ich each arc XI is

vI-1 vI. The LENGTH of such a walk is N, the number of

occ.urrences of arcs in it. A CLOSED WALK has the same first and

last points and a SPANNING WALK contains all the points. A PATH

is a walk in which all points are distinct; a CYCLE is a

nontrivial closed walk with.all points distinc~ (except the fiist

and la.St). If there is a path from u to v·, then v is said to be

REACHABLE FROM u, and the DISTANCE, d(u,v), from u to vis the

length of any shortest such path. A SEMIWALK is an alternating

sequence v0, xl; vl, ... , xN, vN of points and arcs, but each arc

xI may be either vI-1 vI or vI vI-1, A SEMIPATH, SEMICYCLE, and

so forth, are defined as expected. A digraph is STRONGLY

CONNECTED, or STRONG, if every two points are mutually reachable;

it is UNILATERALLY CONNECTED, or UNILATERAL, if for any two

points at least one is reachable from the other; and it WEAKLY

CONNECTED, or WEAK, if every two points are joined by a semipath.

A STRONG COMPONENT of a digraph is a maximal strong

subgraph. Let sl, s2, ... , sN be the strong components of a

digraph D. The CONDENSATION D* of D has the strong components of

D as its points,· with an arc from sI to sJ whenev·er there .is at

least one arc in D from a point of· sI to a point in ·sJ.

An ~CYCLIC digraph contains no directed cycles. A SOURCE in

o is a point which can reach all others; an OUT-TREE is a digraph

with a source having no semicycles.

- 14 -

i
L

.-

" _ _

3. overview of Transformation

In Chapter 4, the target language of the transformation is

described and in Chapter 5 through Chapter 7, three kinds of

algorithms for transformation of CSP programs into coroutines are

described. In this chapter, a general methods which are common to

' '
those three algorithms and also the differences of those three

algorithms are presented.

All the three algorithms in the following chapters transform

CSP programs in the following manner:

(1) a process of a CSP program will be transformed into a

coroutine,

(2) a special routine called scheduler is introduced to manage

the selection and the execution of those coroutines,

(3) each command of a process, except for input and output

commands, will be transformed into the same command of the target

coroutine,

(4) commands which transfer the control of the execution is

introduced,

(5) globally accessible variables are introduced; in those

variables, values of the messages to be P.assed, types of ·the

messages to be passed, and states of the processes are stored,

and

{6) communication among processes are realized through the global

variables: a sender of a message first writes the value and the

type of the message there, and then the receiver of the message

reads and assigns the value into the target variable of the

message.

we compare the three algorithms for transformation described

in chapter 5, 6 and 7. The first difference of those three

- 15 -

)

algorithms to be discussed is the range of CSP programs to which

those algorithms can be applied. The first algorithm, which is

described in Chapter 5, can be -applied to any kind of CSP

programs. on the other hand, the second and the third algorithms,

which are described in Chapter 6 and Chapter 7 respectively, can

only be applied to CSP p_rograms that satisfy certain conditions.

The second algorithm can be applied to CSP programs which do not

contain any input guard. The third algorithm can be .applied to

CSP programs which satisfies three ,:onditicms stated in terms of

two graphs which represents the form of communication among

processes.

Concerning about efficiency of the execution of transformed

programs, we can say the following. The duty of the scheduler,

the special routine that manages the execution, is the he~viest

in the programs transformed according to the first algorithm. In

those_ programs, every coroutine has to be . activated by the

scheduler every time it is activated. In programs transformed

according· to the second algorithm_, once the scheduler activates a

coroutine, the execution can proceed, without returning the

control to the scheduler, as far as the execution reaches the end

of the coroutine. The control flows among coroutines which must

be activated for the execution of the first coroutine. Programs

transformed according to the third algorithm are executable most

efficiently. The only thing the schduler has to do is to activate

, . a special routine called source which leads the exeGution. The

control flows among processes almost in the same manner as in the

programs transformed according to the second algorithms but there

is no need for the scheduler to activate other processes after

receiving the control again from the source; the execution

- 16 -

terminates.

For the sake of convenience, in the following chapters of

this thesis, constituents of the target of transformation,

coroutines, will also be -called processes; we use the words

processes and coroutines interchangeablly when we discuss the

target language.

- 17 -

4. Targ··et of Transformation: A Coroutine Language ASL

The target language of transformation, which we call ASL, is

defined in this chapter. AS stated in Chapter 3, commands which

are not related to input or output commands are borrowed from CSP

preserving their syntax and semantics. Thus, nondeterminism is

also contained in this language. Commands related to input or

output of processe~ are changed. Moreover, commands which express
.,,

fransfer of the control among routines and global variables to be

used for 1 communication of processes are introduced.

In Section 4.1, we describe auxil.iary variables to be

introduced. In Section 4.2, syntax and semantics of commands of

ASL are formally described.

4.1 Auxiliary variables

In .order to. explain the meanings of· the commands of ASL, we

introduce auxiliary variables which do not appear in the text of

ASL programs. Each process (coroutine) has several globally

accessible variables other than local variables which are

inaccessible from other processes. One of those is a variable

which contains the state of the process and is reffered by

p.status,

where pis the name of a paticuler process~. ~he variable p.status

contains one of the followi~g value:

(1) ready {denoted by RE) -- which indicates that the process is

ready to proceed its execution if it is activ?ted,

(2) output waiting (denoted by OW) -- which indicates that the

process was suspended when it tried to output a message and can

not proceed its execution unless the ·corresponding process

reaches the place of the rendezvous and receives the message,

- 18 -

(3) input waiting (denoted by IW) -- which indicates that the

process was suspended when it tried to input a message and can

not proceed its execution unless the corresponding process

reaches the place of the rendezvous,

{4) input waiting in guard (denoted by !WIG) -- which indicates

that the process is suspended when it tried to execute an

alternative or a repetitive command which contains input guards

but none of the guards suceeded, and

(5) terminated (denoted by TE) -- which indicates that the

process has already finished its execution.

Other t·han • status explained above, for each process, we

prepare globally accessible variables whose names and functions

are stated in the following:

(1) message box (denoted by MSGB) which contains the·value of

of the message to be passed ftom the pr:ocess,

(2) message type {denoted by MSGT) -- which contains the type of

the message to be input or output at an input or an output

command,

(3) partner (denoted by PTNR) -- wbich contains the name of the

partner of the communication to be taken place at the time, anJ

(4) caller -- which contains the name of a process which

activated the process ~ya call command or a resume command which

will be explained in ~he next sebsection~ We refer those

variables as

<process name>.<name of the ~ariable>.

For clear explanations of the mechanisms of the execution of

ASL, we introduce one more common variable named executing­

process and a local va·riable named local-sequence-control. The

variable executing-process~ which will be denoted by EXECP,

- 19 -

contains the name of the process to be executed next. The

variable local-sequence-control, which will be denoted by LSC,

points the command of the pro~ess to be executed next. We assume

that the processer of ASL programs picks the content EXECP before

executing .a command if necessary, and then executes a command

pointed by the LSC of the process. We also assume that the

content of the LSC is renewed properly after executing the commnd

and it is retained between succesive acctivations of the process;

i.e. processes behave as co~outines. In the following sections,

we define the meanings of ·commands of ASL using those variables

defined in this section.

4.2 Commands of ASL

Syntax and semantics of commands of ASL is described by

using the variables defined in the previous section.

In order to transfer the control of the execution, we

introduce control commands as follows:

<control command>

<call ·command)
<return command)
<resume command>
<status>

·A ca,l 1 command

,.
call q (ST)

: : = <call ·command>
<return command>
<resume command>

.. - call <process name> (<status>)
• ·= return (<status>)
.. - resume <process name> (<status>)
::= RE 11w I ·!WIG I ow I TE ..

in a process p, transfers the control of the execution to the

named process q, • sets the status of p to ST (here ST is one of

the following: RE, IW, IWIG, OW, or TE), and assigns the name of

th~ activating process, p, into q.caller, that is:

• call q (ST) /* in p */

- 20 -

=q· caller
p.status
EXECP

:c

:=
~=

p;
ST;
q .

The following return command

return (ST)

in a process p returns the control to the caller of p ano sets

the status of p to ST, that is:

return (ST /* in p */

·=p.status
EXECP

: ::: ST;
: • p. calle.r.

The following resume command

resume q (ST)

in a process p activates the process p· and sets the p.caller if

p. cal 1° is not g. The ·command also sets the status of p to ST.

That is:

resume q (ST) /* in q */

=p.status := ST;
[p.caller = q --> skip
up.caller <>q --> q.caller := p);
EXECP : = q

Message commands which take charge of message passings have

the following form:

<message command> ::; <receive command>
<send command>

<receive command>
::= receive (<targetvariable>) from <process name>

<send command>
::= send (<expression>) to <process name>.

A receive command assigns the value of the message to the target

variable and returns the value success as the result if it can

receive the correponding message. It returns the value fail if it

can not receive the message. A send command writes the value of

- 21 -

the expression in MSGB, writes the type of the expression in MSGT

and changes the status of the partner of the rendezvous if it is

suspendea:and the message corresponds.

- 22 -

5. Algorithm for Transformation (1)

Three algorithms for transformation are described in 9hapter

S through Chapter 7. In this chapter the first algorithm which

can be applied to any kind of CSP programs are presented. Its

informal description is given in Section 5.1 and the rigorous

description of this algorithm is given in 5.2.

5.1 overview of the First Algorithm

As stated in Chapter 3, every process of a CSP program is

transformed into a coroutine and each command of each process -is·

transformed into the same command except for input and output

commands. A special routine called scheduler is added to those

coroutines and it always k~eps the status of every process and

control the execution.

The scheduler repeats the foll~wing cycle until no process

is executable.

(1) The scheduler chooses and activates a process· which is

executable·;

(2) The chosen process executes its commands as far as it can

proceed (the process can not proceed when it can not send or

receive a message at an input or an output command, or when it is

terminated.);

(3) The suspended process returns the control to the scheduler.

The mechanism of the message passing is as follows. In

principle the process which reaches the place of the rendezvous

first writes the type of the message (and the value of the

message if the process is the sender of the message) in globally

accessible space, then the other process which reaches the input

or the output command checks the correspondence of the message,

- 23 -

:.

U.::::1 .. Q. BE;..; q~ ?vt --> CL~,

where BE and CL stand for Boolean expressions and command list.

respectively.

(4) ELSE in

[tl Z::.l" L
ELSE

BE t --> CL,t
-->CL)

is defined as ELSE= A.~ (not BE~).

An output command in a process q which has the form

pie

is transformed into the following commands:

send (el top; return (OW).

An input command which is not appearing in a guard of a-process p

and has the form

q?v

is transformed into the following command:

[receive
ELSE

(v) from q --> skip
--> retu~n(IW); receive (v) from q

)

An alternative command with input guards in a process p

which has the form

ID ~-.:.l,, t BE~ ; q;; ?v.t --:-> CL~
Olli.::.tt\.:~.-.BE;: --> CL;:

is transformed into the following:

(lh~1,,'l.. BE~;receive(v~) from qtt --> CLJ:
tlt\l::.T,-\i .. ¼'r\BEt --> CLA
Ul\h, not BE;: or not receive(v_z) from q~).;lh_~\,,'MBE,(-->

return (IWIG) ;
([1q_.Q receive(v.A) from q~ --> CL~ l

A repetitive command with input guards in a process p.which has

the form

- 25 -

is transformed into the following:

flag: boolean; flag := true;
*('[J4-.. 1 .. t_ flag; BE;:;; receive(v;.) from q~ --> CL~
UU l"'-!eil.,1"' flag; BE A --> CL i,.
i]flag;,\~ 1 (not BE~ or not receive(v,:) from q~);

i\J\ (not BE,t)· --> rflag: boolean; rflag := true;
*.[flag -->

[rflag --> return (IWIG)
Dnot ~flag--> skip }
DO t=h-~ B~; receive (v~ from q_.;--> CL;
t\Q ~-=-t'\\.,.,...BE ,. --> CL~; rflag : = false
U ELSE--> flag := false
]

At the end of each process, we insert

return (TE)

to inform its termination.

- 26 -

6. Algorithm for Transformation (2)

If a CSP program to be transformed has no input guard, a

strategy called demand driven reduces the duty of the scheduler,

since in those cases the pair of participants of a - paticular

communicatin is always determined uniquely.

If a process preaches an input or an output command, the

process transfer the control to the partner of the rendezvous.

Jhe activated process proceeds execution, until it reaches the

place of the rendezvous and answer the request of the activator.

It is possible that th~ called process also activates other

processes, however, thoie called processes can not call any

process which is already waiting for the partner.to respond the

request, since this indicates the presence of deadlock. Thus, if

there does not arise any deadlock, the control must return to the

first process p. In this .. way· the execution proceeds- until the

process· p chosen by the . scheduler terminates and return the

control to the scheduler. Thus, the number of the scheduler's

choice of the process to activate decreases ~omaring with the

first algor·i thm. •

(1)

The transformation proceeds in the following manner.

If an input command

q?v

appears, it is changed to

[receive v from q --> return (RE)
l}lot (receive v from g) -->

call q (IW); receive v form q]

(2) If an output command

q!e

appears, it is changed to

- 27 -

send (e) tog; resume q (OW)

(3) At the end of each process

return (TE)

is inserted to inform its termination.

- 28 -

7. Algorithm for Transformation (3)

rn this chapter the third algorithm for transformatin is

presented. CSP programs which satisfy certain conditions can be

efficiently executable. The first section of this chapter shows

the conditions to be satisfied, the second section explain-s the

algorithm informally, and in the last section., rigorous rules for

transformation are presented.

7.1 Conditions to be Satis~ied

If a CSP program satisfies certain conditions stated in this

section, the role of the scheduler is to only activate a special

process ca~led sourc~ process which leads the computation~ In

this section we first states the conditions to be satisfied, and

then, describe the way of transformation.

Any program in CSP that satisfies three conditions stated

below in terms of communication graph [19) and activation graph

can be executed without arbitrary choice of th~ prcicess by the

scheduler. At first the communication graph Ge is defined as

follows:

Definition 1 (communication graph Ge).

For a given CSP program, the COMMUNICATION GRAPH Ge is defined

as follows:

(1) each process is a point of Ge, and

(2) if there is a communication (i.e. transfer of messages) from

a process p to a prcess g, pq is contained in Ge as an arc.

Let p be the set of processes of the CSP program, or, in other

words; the set of points of Ge, and let Ac be the. set of arcs in

Ge. we write as Gc=(P,Ac). The first condition to be satisfied is

- 29 -

as follows:

Condition 1.

Ge is acyclic.

By this condition a partial order..<'._ can be naturally induced

into the set of points P ~f Ge. We shall define the order of

p,qE P as

pq~Ac ==>

Suppose that an exp1:ession in CSP s·atisfies the above condition.

The next condition we take into consideration is:

Condition 2.

There exists a process sE.P such that for any -pEP, P::6;S or

s~p holds.

The process which satisfies 'the above condition may. not be

unique, I.f there exists more than one process, we select an

arbitrary .one and fix it from now on.

Definition 2 (source process s).

we select a process which satisfies Conditin 2 and fix it. we

call the process the SOURCE (PROCESS) .of P, which will be denoted

by s.

Another kind of graph called activation graph is now

defined.

Definition 3 {activation graph Ga).

If Condition 1 and 2 are satisfied, the ACTIVATION GRAPH

Ga=(Pa,Aa) of a CSP program can be defined as follows:

- 30 -

{l) Pa=P (the set of points is the same as that of Ge; thus we

use P instead of Pa), and

(2) pq~ Aa <==> qpEAc { if q~ s)

pq€Ac (if s~p).

Note that indegree of the graph Ga of the source process sis 0.

The following proposition is proved easily.

Proposition 1.

Ga is acyclic.

By this proposition, a new partial order (P~) which is

different from (P,.:s'.,.) is induced; it represents the order of the

activation.

The last condition to be satisfied is stated in terms of the

activation graph Ga as follows:

Condition· 3.

Ga is an out-tree.

Remark.

The above condition is equivalent to the following one:

Condition 3'.

with respect to Ga, the indegree of the source.sis 0 ana the

indegrees of all other processes are 1.

For convenience, we will define several terms.

Definition 4 (producer and consumer).

A process pis said to be a PRODOCER (PROCESS) if p4-s, and is

said to be a CONSUMER (PROCESS) if s4-p.

- 31 -

Definition 5 (parent, son, ancestry and descendant).

For each p E:P, we define the fqllowing:

(1) if qpf;Aa, g is said to be the parent of p (which is uniquely

defined),

(2) if pqEAa, q is said to be a son of p,

(3) {qG-P I q~p} is said to be ancestry of p, and

(4) [qGPlp~g} is said to be descendant 9f p.

7.2 overview of the Third Algorithm

·Those programs which satisfy above three. conditions can be

executed in the following manher.

(1) The shceduler activates the source process s.

(2) The source process makes all the prbducer proce5ses be ready

to send messages iri the following way:

{2-1) it activates each of its sons that i's a consumer, and

then.

(2-2) each of those sons also makes their sons be ready to

send messages by activating them,.

(2-2) proceeds until all the producers are activated arid become

ready to send messages to their parent processes.

(3) The computation proceeds by the leading of the source process

preserving ·the condition .that all the producer processes are·

always be ready to send messages unless they are terminated,

(Note that the result of the input guards can be always

determined since all the producers are ready to send messages.)

(4) When the source process ·is reached its end, it broadcasts its

termination to all the consumers in the same manner as (2-2).

(5) All . the consumers ch~nge their status to "terminated,,- and

return the control to their parents.

- 32 -

(6) The source process gets the control again and returns it to

the· scheduler.

(7) The execution terminates.

7.3 Description of the Third Algorithm

Let P be the set of processes o·f a CSP ·program to be

transformed. We transform a process p E P in the following manner .
.,

(1) If p~s, insert the following call commands at the top:

call q 1 (RE); .. A, call qi\'\ (RE),

where each qt is a son of p.

(2) A command which is not or does not contain any input or

outpu_t command is not changed.

(3) An input command which does not appear in guard is changed as

follows:

(3-1) i£ p~s,·.anrl .input command

g?v

is changed to· .

receive (v} from q; call q (RE),

and

(3-2) if s~p, an input command

q?v

is change to

receive (v) from q; return (RE).

(4) An output command is changed as follows:

(4-1) if P4-s, and output command

q!e

is changed to

send (e) tog; return {OW),

and·

- 33 -

......... -·- ... ·- --- ·- ,- - - - - - •. - - .. - . -

(4-2) if s..Lp·, an output command

qle

is changed to·

send (el to q; call q (OW).

(5) An alternative command with input guards in p....(.s

[U,;:;..1,,e.,. BE.[; g ,c?V t\' --> CL,.'

nnt-=.e-ti .. ""' BE~ --> CL-\

is changed to ~ ...

(O~ .. ~ BEr;- receive (vA°) from g.,.,., -->
call qA (RE); CL~

U11t"-tt\,t'M BE A --> CL A J •

Ifs~, the command

call g (RE)

in the above is replaced by

return (RE).

(6) An repetitive command with input guards in p~s

* [·tl.t ,.,, .. .e_ BE :t-: q ,t ?v;;: -- > CL A
lYll~~.t-tt .. ~ BE) --> CL ,i. J

is changed to

* CD:,..::..1.,.e.__ BE;:-; receive (v-{) from q ;:-->
can q- (RE); CL.(

rmA -=it<.,...... 8E,e --> CL A] •

If s~p, the command

call q (RE)

in the above is replaced by

return (RE).

(7) If p~s, the following command is inserted in the end:

return (TE).

(8) If 89, the following command is inserted in the end:

call q
1

(TE); ... ; call gM (TE); return (TE),

where each g~ is a son of p.
,A

The following is an example of this algorithms of

- 34 -

transformation. A CSP program shown in 2.1.3 of 8-Queens Problem

is transformed as follows, where TRY(9) is chosen as the source

process.

[TRY (i: 1.. 8)::
A: (1. .8) boolean; B: (2 .. 16) boolean;
C:(-7 .. 7) boolean; X:(1..8) integer;.
call TRY(i-1) (RE);
*[receive((A,B,C,X)) from TRY(i-1) -->

call TRY (i-1) (RE);
j:integer; j:=l;
*[j<=B; A(j); B(i+j); C(i-j), -->

X(i) := j;
A(j) := false;
B(i+j) := :false;
C(i-j) := false;
send((A,B,C,X)) to TRY(.i+l);
return;
A(j) :=
B(i+j) :=
C(i+j) :.::
j : = j+l

true;
true;
trti-e;

)]

11
TRY(0)::

A: (1.. 8) boolean; B: (2 .. 16) boolean;
C: (-7 .. ?)boolean; X: (1. .8) integer;
i:integer;
i:=l; *[i<·;.~ --> A(i):=true;
i:=2; -*[i<=l6 --> B(i):=true;
i:=-7;*[i<=7 -->- C(i):=true;
i:=l; *[i<=8 --> X(i):=0;
send((A,B,C,X)) to TRY(l);
ret.urn (OW)

i:=i+l];
i:=i+l];
i:=i+l];
i:=i+ll;

11
TRY (9) : :

A: (1..8) boolean; B: (2 .. 16) boolean;
C: (-7 .. H boolean; X: (1. .8) integer;
call TRY(8) (RE);
*[receive((A,B,C,X)) from TRY(8) -->

call TRY(8) (RE);
send{ X) to PRINT; call PRINT (OW)

- 35 -

8. Comparison with Related Works

In this chapter, we compare the method of. transformation

presented in this thesis with other related works: T. Katayama's

work [44,45) of translation of attribute grammars [48) into

procesures, A.N. Habermann and z:R. Nassi's work [33) of Ad~

tasks {78) into procedures and T. Hagino's work [28) of

transformation of CSP programs into ~equental programs.

8.1 Gomparison with Katay~ma's Method

Katayama's IDethod for translation of attribute grammers into

procedure~ is designed· for effective evaluation of value bf

attributes and its outline is as follows [44).

Let X be a nonterminal symbol of ·an attribute grammar

G=(Vn,Vt,P,S), where Vn, Vt, P and Sare a set of nonterminal

symb~ls, a set of terminal symbols, a set of -production rules and

the start symbol ~espectively, and let s be a synthesized

attribute of X. we associate with each pair (X,s) a procedure of

the form

R (Vl, ... , Vm, T; V);

where Vl, ... , Vm are parameters corresponding to the inherited

attributes which are necessary to evaluates, Tis an derivation

tree and Vis a parameter which corresponds to s. Thus parameters

to the left (right) of ';' are input (output) .pa_rameters. This

procedure R is intended to evaluate the synthsized attributes

when supplied with the values of attributes which are necessary

for the evaluation of s and a derivation tree T. When we are

given the initial derivatin tree T0 and a synthesized attribute

s0 of the initial symbol S, we begin evaluation of s0 by

executing the procedure call statement

- 36 -

call Rl (T0;V0),

where V0 is a variable , corresponding to s0. The execution

proceeds, recursively caliing the procedures which are necessary

• to evaluate sunthesized attributes, until the desired value·V0 is

computed.

Attribute grammar _systems, as well as CSP, can be considered

useful means of description of algorithms. Thus, motivations of

Katayama's method and the method presented in this thesis are

quite similar. Since an attiibute grammar is an augmented form of

a context·free grammar, there are strong relations among symbols

by means of production rules of the grammar, and usually those

gi:ammers contain recursiveness by nature. Thus, it is natural to

.evaluate the values of the attri.butes by '.3Ctiv·ating mutually

recursive procedure. Among processes ~f general CSP programs,

however, no such relation can be found. Hence, ·the method taken

by Katayama can not be applied to CSP programs directly.

8.2 Comparison with Habermann and Nassi's Method

The Habermann-Nassi Method for efficient implementation of

Ada tasks is a method which transforms the calls of entries by

tasks into simple procedure calls. Its outline is as follows

(77-] .

In their method, each task with entries is transformed into
<·.

a procedure and each entry is embedded as a block of the

procedure. However, it is not sufficient to replace .the body of

an entry by the body of a corresponding procedure, since in that

case demands from other tasks which originally have tobe delayed

will succeed at once. To avoid this error, we prepare locks for

each entry and control them as if the control· proceeds

- 37 -

sequentially (coroutine like way) through the task. We show an

simple example which is adopted from [77], where four semaphores

are introduced to control the execution.

task body T is
begin

loop
accept·El do

- 1 -
end E.l;
accept E2 do

- 2 -
end E2;
accept E3 do

- 3 -
end E3;

end loop;
end T;

Before Transformation

S1 :z l;
S2,S3 := 0;
S0 := 0; P(S0);
El: P(Sl);

- 1 -
V(S2);
return;

E2: P (S2);
.- 2 -.

V (S3);
return;

E3: P(S3);
..:. 3 -

V(S1);
return;

After Transformation

The ·mechanisms of rendezvous of two tasks in Ada are

strongly in£itienced by CSP, however, the roles of tasks involved

in a r.endezvous ar.e not symmetric; a task calls and the oth_et;

task ~ccepts the request wh~n it reaches an appropriate entry.

There is no need to write explicitly the name of the task with

which an entry is concerned. These phenomena enable the method

stated above effective. As for CSP, the same method can not be

applied directly, since there is no caller-callee relation

between any two processes.

8.3 Comparison with Hagino's Method

In (28], Hagino completely changes CSP programs into

sequential programs, i.e. there is only one routine after the
,

transformation. The transformation proceeds in the way shown

below, where

(<command list>} 0 (<command list>)

- 38 -

denotes the result of the transformation.

A CSP program

[P:: x:=l; Q!x; Q?x
Q:: P?y; y:=y+2; P!y

will be transformed in the following way.

(x:=l; Q!x;
X: : = l ; (Q i· X ;

x:=l; y:=x;
x:=l; y:=x;
x:=l; y:=x;

Q?x) (±) (P?y; y:=y+2; P!y)
Q?x) (±) (P?y; y:=y+2; P!y)
(Q?x) ff) (y:=y+2; Ply)

y:=y+l; (Q?x) {±) (Ply)
y_: ~y+l; ..x: =y ..

This method of trnsformation is proposed for verifications

of CSP porgrams and the ef-f i·ciency of transfo-rmation ·is of 1 i ttle

concern. In fact, the procedures have to be executed are

complicated and the meanings of the result of the. transformation

is almost impossible to_ understan9. on the other hand, the method

taken in thfs €hesis preserves ·the structure of the processes and

the rules of transformation are simple and· efficiently

executable.

- 39

9. Conclusion

As a way to solve the probl~m of effective scheduling of

processes of CSP, three a~goiithrns for transformation of CSP

programs into coroutines are presented; The first algorithm is

simple and can be applied to general CSP programs but not

efficient, the other two algorithms can only be applied to

restricted classes of CSP programs but rno~e efficient than the

first one.

Comparisons with thr-ee other:· r-elated works are also

presented. The method taken in this thesis has similarity with

each of those works, but methods of those works can not be

applied directly to the problem of efficient scheduling of

processes of CSP .

..

- 40 -

Acknowledgement

The author wishes. to thank Prof. T. Tokuda for his kind and

helpful advice and ehcogragements, and alsa, wishes to thank the

members of the fac~lty of Yamanashi University including

Prof. M. Arisawa, Mr. M. Iuchi and Prof. T. Yoshizawa for their

adv ice and e•ncouragernents.

- 41 -

References

[l] Apt, K.R. et al.: IIA Proof System for Communicating

Sequential Processes," ACM Trans. on Prog. Lang. and Sys.,

Vol. 2, No. 3 (Jul. 1980), pp. 359-385.

(2] Arsac, I. et al.: "Some Techniques for Recursion Removal for

Recursi~e Function~," ACM Trans. on Prog. Lang. and Sys.,

Vol. 4, No. 2 (Apr. 1982), pp.295-322.

[3} ·Ashe.raft, E.A .. et al.: "Lucid, a Nonproc,edural Language with

lteration," . Comm. ACM, Vol. 20, No. 7 (Jul. 1977), pp.

519-526.

[41 Bernstein, A.J.: 11Output Guards and Nondeterminism in

Communicating Sequentia·1 Processes," ACM Trans. on Prag.

Lang. and sys., Vol. 2, No. 2 (Apr. 1980), pp. 234-238.

[SJ Bezi~in, J. et al.: "Another View of Coroutines,"

SIGPLAN Notices, Vol. 13,. No.5 (May. 1978), pp. 23-25.

[61 Bird, R.S.: "Notes on Recµrsion Elimination," Comm. ACM,

vol. 20, No. 6 (Jun. 1977), pp. 434-439. ,,,

(71 Birtwistle, G.M. et al.: SIMULA BEGIN, .Lund, 1981.

(8} Clarke, E.M.: "Proving Correctness .of Coroutines Without

History Variables," Acta Informatica, No. 13 (1980), pp.

169-1_88.

[9] Clint, M.i "Program Provin~: Coroutines," Acta Informatica,

No, 2 (1973), pp. 50..:63.

(10) Clocksin, w.F. et al.: Programming in prolog, Springer-

Verlag, 1981:.

[11] Conway, M.E.: "Design .of a Separable Transition Diagram

Compiler," Comm. ACM, Vol. 6, No. 7 (Jul. 1963), pp.

122-134.

- 42 -

)

(12) Dahl, o. J. et al.: Structured Programming, Academic ·Press,

1972.

(13} Dijkstra, E.W. et al.: "Goto Statement Considered Harmful,"

Comm. ACM, Vol. 11, No. 5 (Mar. 1968), pp. 14.7-148.

[14) Dijkstra, E.W.: "Guarded Commands, Nondeterminacy and Formal

Derivation of Pr.ograrns," Corom. ACM, Vol. 18, No. 8 (.Aug.

1975), pp. 453-457.

(15] Dijkstra, E.W.: A Discipline of Pro9ramming, Prentice-Hall,

19.76. •

.(16) Dijkstra, E.W. et al.: "Termination Detection for Diffusing

Computations," Information Processing Letters, Vol. 11, No.

l (Aug . 19 8 0) , pp. 1- 4 .

(17] Doi, N.: "Processes and Their Synchronization - Rendezvous,"

__ill, Vol. 14., No .. ,4 - 7 (.19.82).

[18) Floyd, R.W.: "Nondeterministic Algorith~s," J. ACM, Vol. 14~

No. 4 (Oct. 1967), 'pp. 636-64L

[19] Francez, N.: "Distributed Termination," ACM Trans. on Prog.

Lang. and Sys., Vol. 2, No. 1 (Jan. 1980), pp. 42-55.

(20] Furukawa, K. et al.: "On Vex:ification of Prolog Coroutine

Interpreter," Proc. of 1st Meeting of WGSF of IPSJ, 1982.

[21] Furuya, T.: "Concurx:ent Programming by High Level.Language,"

Joho-shori, Vol. 21, No. 9 (Sep. 1980), p!,).949-958.

[22] Gentleman, W.M.: "A Portable Coroutine System," Information

Processing 71, pp. 419-424, North-Holland Publishing Company

(1972).

[23] Gries, D.:

Languages,"

414-420.

"Some Ideas on Data Types in

Comm. ACM, Vol. 20, No.6 (Jun.

- 43 -

High-Level

1977), pp.

(24) Gries, D.(Ed.): Programming Methodology, A Collection of

A~ticles by members of IFIP WG 2.3, Springer-Verlag, 1978.

[25] G~jes, D.: The Science of Programming, Springer-Verlag,

1981.

[26) Griswold, R. E. et al.: "Gene:ca·tors in Icon," ACM Trans. on

Prog. Lang. and Sys., Vol. "3, No. 2 (Apr. 1981), pp. 1

[271 G~une·, D.: "A View of Coroutines," ACM SIGP~AN Notices, Vol.

12, N __ o. 6, (Jul. 1977), pp. 75-81.

[28] Hagino, T,: "V.erific.ation of • Communicating Sequential

Processes," Proc. of 2nd Meeting of WGSF of IPSJ, 1982.

(29) Hansen, P.B.: "The Programming Language Concurrent Pascal,"

IEEE Trans. on Soft. Eng., Vol. SE-1, No. 2 (Jun. 1975), pp.

199-207.

{30] Hansen, P.B.: "Distributed Processes: A Concurrent

Programming Concept," Comm. ACM, Vol. 21, No. 11 (Nov.

1978), pp. 934-941.

[31] Hansen, D.R. et al.: "The SLS Procedure Mechanism,"

C'Olnm. ACM, Vol. 21, No, 5 (May. 1978), pp. 392-400.

[32) Harary, F.: Graph Theory, Addison-Wesley, 1969.

(33] Harbermann, A.N. et al.: "Efficient Implementation of Ada

Tasks,",Dept. of Comput~r Science, Carnegie-Mel.Ion . Univ. ·. :

(1980).

(34] Hebner, E.C.R.:
(

"do Considere~ od: A Contribution to the

Programming Calculus," Acta Informatica; Vol. 11 (1979), pp.

287-304.

[3 S] Hender son , P . : _F_u_n_c_·_t_i _o_n_a_l ___ P_r_o_,g,_r_a_m_m_i_n_.g..._ __ A...,P,._P_l_i_c.;..a.;..t-'--i_o....;.n'--__ a_n_d

Implementation, Prentice-Hall International, 1980.

- 44 -

[36} Hewitt, C.E. et al.: "Towards a Programming Apprentice,"

IEEE trans. on Soft. Eng., Vol. SE-1, No. _l (Mar. 1975), pp.

26-45.

[37] Hikita, .T. et al.: "Introduction to Ada,"_ Nikkei

Electronics, Dec. 21 11981), pp. 130-162.

{38) Hoare, C.A.R.: "An Axiomatic Approach to Computer

Programming," Comm. ACM, Vol. 12, No. 10 (Oct. 1969), pp.

576-580, 583.

[39} Hoare, C.A.R.: "Proof of Co~rectness of Data Represen-

tations," Acta Informatica, Vol. 1 (1972), pp. 271-281.

[40) Hoare, C.A.R.: "Monitors: An Operating System Structuring

Concept," Comm. ACM, ·vol. 17, No. 10 (Oct. 1974), pp.

549~557.

(41) Hoare, C. A. R. : "Communicating Sequential Processes,"

Comm. ACM, Vol. 21, No. 8 (Aug. 1978), pp. 666-.677.

(42) Jacobsen, T.: "Another View of Coioutines," ACM SIGPLAN

Notices,Vol. 13, No.4 (Apr. 1978), pp. 68-75.

143] Kahn, G. et al.: "Coroutines and Networks of Parallel

Processes," Information Processing 77, North Holland (1977),

pp. 993-998.

[441 Katayama, T.: "Translation of Attribute Grammar -into

Procedures," Tech. Rep. CS-K8001 {1980), bept. of Comp.

_Sci., Tokyo Inst. of Tech.

[45) Katayama, T.: "HFP: A Hierarchical and Functional

Programming Based on Attribute Grammar,'' Proc.· of 5th Int.

conf. on Soft. Eng., 1981.

[46] Kieburtz, R.B.: "Comments on Communicating Sequential

Processes," ACM Trans. on Prog. Lang. and sys., Vol. 1, No.

2 (Oct. 1979), pp. 21s·-22s.

- 45 -

(47] Kimura, I. et al.: Theory of Expressions of Algorithms,

Iwanami, 1982.

[481 Knuth, D.E.: "Semantics of Context Free Languages," Math.

Syst. Theory, J. 2 (1968), pp. 127-145, Correction, Math.

Syst. Theory, J. 5 (1971) , pp. 95-96.

[491 Knuth, D.E.: The Art of Computer -Programmini, Vol. 1,

Addison Wesley, 1969.

[50] Levin, G.M. et al.: "A Pioot Technique for Communicating

Sequential ~rocesses,• Acta in~ormatica, Vol. 15 (1981), pp.

281-302.

[51) Lewis, B: "Further Comments on 'A View of Coroutines• , " ACM

SIGPLAN Notices, Vol. 13, No. 7 (Jul. 1978), pp. 31-33.

{ 5 2] Lind st row, G . : "Referencing and Retention in Block-

.Structured Coroutines," ACM Trans. on Prog. Lang~ and Sys.,

Vol. 3, No. 3 (Jul. 19~_1), pp. 263-292.

[53] Lindstrow, G.: "Backtracking in a Generalized Control

Setting," ACM Trans. on Prog. Lang. and Sys., Vol. 2, No. 1

(Ju 1-. 19 7 9) , pp . 8 - 2 6 .

(54] Liskov, B.H. et al.: "Specification Techniques for Data

Abstractions," IEEE Trans. on Soft. Eng., Vol. SE-1, No. 1

(Mar. 1975), pp. 7-19.
·. :

[55] Liskov, B.H. et al.: "Abstraction Mechanisms in, CLO,"

Comm. ACM, Vol. 20, ·No. 8 {Aug. 1977), pp. 564-576.

(561 Liskov, B.H. et al.: CLO Reference Manual, Lecture Notes in

Computer Science 114, ·springer-Verlag, 1981 ..

[57] Lynning, E.: "Letter to editor," ACM SIGPLAN Notices. Vol.

13, No. 2 {Feb. 1978) , pp. 12-14.

- 46 -

(SB] Marlin, c.o.: "Coroutine~ and Return Addresses (Letter to

editor) ,n ACM SIGPLAN ·Notices, Vol. 13, No. 9 (Sep. 1978),

pp. 19-20.

(59) Marlin, C.o.: Coroutines, Lecture Notes in Computer Science

95, Springer-Verl~g, 19a~.

[60] Misra, J. et al.: "Termination Detection of Diffusing

Computations in Communicating Segue:ntial Proce·sses," ACM

Trans. on Prag. Lang. and Sys., Vol. 4, No. 1 (Jan. 1982),

pp. 37-43.

[61) Musha, H. et al.: "Coro·uti·ne Ra·tfor - Its _I-mpl_ementati6n and

Osage," Proc. of 24th Conf.· of IPSJ, pp. 229-230, 1982.

(62) Nakata, I.: "Programming with Streams of Data," unpublished

paper (1982).

(63) Noel, J.G.: "Letter to editor," ACM SIGPLAN Notices, Vol.

12, No; 12 (Dec; 1977), p. 23.

(64) Pauli, w. et al.: "Coroutine Behaviour and Im~lem~ntation,"

189-20~.

[6 5] Pratt, T.. W. : Programming Languages: Design and

Implementation, Prentice-Hall Inc., 1975.

(66) Ritchie, D~M. et al.: "T.he UNIX Time-Sharing. System,"

Comm. ACM, Vol. 17, No. 7 {Jul. 1974), pp. 365-375.

{67} Roper, T.J. et al.: "A Communicating Sequential Process

Language and Implementation," Software-Practice and

Experience, vol. 11 (1981), pp. 1215-1234.

(68J Sassa, M. et al.: "Stream Functions and Their

Implementation," Proc. of 23rd Conf. of IPSJ, pp. 175-176,

1981.

- 47 -

{69] sassa, M. et al.: "Programming with Streams,"- Proc. of 25th

Conf. of IPSJ, pp. 257-258, 1982.,

(70] .Sahara, M. et al.: "Implementation of Stream Functi~ns by

coroutines," Proc. of 24th -Conf. of IPSJ, pp. 227-228, 1982.

·(71] Schneider, F.B.: "Synchronization in Distributed Programs,"

ACM Trans. on Prog. Lang. and Sys., Vol. 4, No. 2 (Apr.

1982), pp. 125-148.

[72] Shaw,· M. et al.: "Abstraction.and Verification in Alphand:

Defining and Specifying Iteration -and_- Generators,"

Comm. ACM, Vol. 20, No. 8. {Aug. 1977), pp. 553-564.

[73] Skordalakis, E. et al.: "Coroutines in Fortran," ACM SI GP LAN

Not ices, Vol. 13, No~ 9 (Sep. 1978) , pp,. 76-84.

[74] Staunstrup, J: "Message Passing Communication Versus

Procedure Call Communication," Software-Practice and

Experience, Vol. 12 (1982), pp. 223-234.

[751 Stevens, W.P.: "How Data Flow Can I_mprolle Application

Oellelopment Productivity," IBM Systems Journal, Vol. 21, No.

2 (19 8 2) , pp. 1~2-178 .

[761 Togawa, H.: "Introduction to Simula," ..!2,il., Vol. 11, No. 8,

pp. 28-34, No. 9, pp. 42-49, No. 10, pp. 92-97 (1979).

[77] Tokuda, T.: "Notes on Ada Implementabi 1 i ty Issues.,"

Joho-Shori, Vol. 21, No. 3 (Mar. 1980), pp. 226-232 .

. [78) U.S. DoD: Reference Manual for Ada Programming Language,

1980.

[79J Vanek, Z.I. et al.: "Hierarchical Coroutines: A -Mechanism

for Improved Program Structure," Proc. of 4th Int. Conf. on

Soft. Eng., pp. 274-285, 1979.

[80] Wang, A. et al.~ "Coroutine Sequence in a Black Structured

Environment, 11 BIT, Vol. 11 (1971), pp. 425-449.

- 48 -

•

•

[81] Ward, S.A. et al.: "A Syntactic Theory. of Message Passing,"

J .• ACM, vol. 27,.No. 2 (Apr. 1980), pp. 365-383 .

[82] Wirth, N.: Algorithm + Data Structures = Programs, ---"------------------------ --
Prentice - Hall, 1976.

(83} Yamamoto, K.: ''SIMULA," Joho-Shori, Vol. 22, No. 6 .(Jun.

1981), pp. 477-482.

[84] Yamano, K. et al.: "Applicative Communication Function for

Parallel Programming," Proc. of 3rd Meeting of WGSF of IPSJ,

1982.

[85} Yonezawa, A.: "A Tutorial on ACTOR Theory," Joho-Shori, Vol.

20, No. 7 (Jul. 1979) , :E>P• 580-589.

[86] Yoardon, E. et al.: Structured Design: Fundamentals of a

Discipline of Computer. Program and systems Design,

Prentice-Hall Inc.,· 1979.

{87] Yuasa, T. et al.: "Programming .Environment for Modular

Programming," Joho-Shori, Vol. 23, No. 5 (May. 1982), pp.

433-441.

- 49 -

