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1. _ Intrdduction 

Distributed computing models are natural and powerful 

systems 'for describing both concurrent and sequential computing 

phenomen·a and they gain growing interests in connection with VLSI 

technol~gy. The system of Communicating Sequential Processes, 

which we call CSP in the following of this thesis, is one of 

those models propos~d by C.A.R. Hoare in 141]. 

In CSP, input and output of processes are considered basic 

primitive;s> • -Combineq with _nondeterminism, those primiti11es 

provide us simple and transparent descriptions of algorithms. 

Algorithms described in CSP, as they are, however, are not 

e·fficiently executable under ·conyentional cornputiTrg environment. 

Effective scheduling algorithms of processes are needed . 

. In this the.sis, methods for transformation of descriptions 

of algo.r.Lthms in CSP (CS.P pro.grams for short) into sequentially 

executable programs are presented: Coroutines are set to the 

target of the transformation and three di fferen.t algor i thsm for 

transformation are described: the first algorithm is simple and 

can be applied to general CSP programs but not efficient, the 

other two,a-lgorithms can only be applied to restricted classes of 
( 

CSP programs but more efficient than the first .one. ThO$e 

algorithms must contribute to the problem of scheduling· of 

processes, 

The rest of this thesis is organized as follows. In the next 

chapter, definitions of CSP, coroutines and necessary concepts in 

graph theory are given. Chapter 3 ove~views the algorithms for 

transformation. In Chapter 4, syntax and semantics of the target 

of transformation, a language. with ·a kind of coroutine facility, 

is described. Chapter 5, 6 and 7 • show the algorithms for 
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transformation. In Chapter 8, we compare the method of 

transformation taken in this thesis with other related works. 

Conclusi6n is presented in Chapter 9. 

'. 
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2. Preliminaries 

In this chapter, preliminary concepts for discussions given 

in the following chapters are defined, In 2.1, definitions of 

CSP, their syntax and .semantics, are. given, definitions of 

coroutines are given in 2.2, and 2.3 states definitions of terms 

related to graph theory. 

2.1 Definitions of CSP 

In this section, definitions of CSP are given. At first 

informal introductions are given, then. in the following section., 

we show their syntax and semantics rigorously, and in Section 

2.1.3, examples of CSP programs are shown. 

2.1.1 Overview of CSP 

In this section, sysntax and semantics ?f CSP are informally 

.described. A .CSP program is a collection P of processes, which 

share no common variables at all and are supposed to be executed 

concuLrently. Communication between two processes p and q of pis 

expressed by the. input and output commands 

q?v 

and 

p!e, 

where e is an expression and v is a variable in which the 

received value of the expression of e is assigned. Execution of 

these commands are synchronous, i.e. p waits at "q?v" unti 1 q is 

ready to output the message at "p!e" and vice versa. 

Constituents of each process are commands based on 

Dijkstra's guarded commands (14,15,25}, which can be classified 

into two types: simple commands and structured commands. The 

- 3 -



members of the simple commands are the assignment command, the 

input command, the output command and the null command which does 

nothing. Structured commands, alternative and repetitive 

commands, are organized by a set of guarded commands and express 

selective and repetitive execution. 

A guarded command is executed when its guard does not fail. 

An alternative command fails if all guards fail. A repetitive 

command specifies as many iterations as possible .of its 

constituent alternative commands, and it terminates when all 

-g~ards fail. 

An input command can appear in the end of a guard and is 

~xecuted only when a corresponding output command is executed; it 

is called an input guard. The input command fails if the process 

specified is terminated; the execution suspends if the 

corresponding process is not_ ready to output, which can result in 
' . 

deadlock. In recent papers (1,19,28,50] output guards are also 

permitted, however, in the rest of this thesis output guards are 

not supposed to appear in guards. 

2.1.2 Formal Description of CSP 

In this section, syntax and semantics of CSP are defined. At 

first the whole sysntax is shown in terms of extended BNF, and 

then, the meaning of each command is explaind. Examples of usage 

of theses commands are in the next section. 

The whole syntax of CSP is as follows: 

<command> ::= <simple command>i<structured command> 
<simple command> ::= <null command>!<assignment command> 

!<input command>j<output command> 
<structured command> ::= <alternative command> 

!<repetitive command> 
<null command> ::= skip 
<command list> ::= {<declaration>; J <command>;}<command> 
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--- ------------------ ----- --- _______ , ___ --- . --- - -- -·--~---·-.. ---·- -- ..... .-

<parallel command> ··= [<process>{! !<process>}] 
<process> ::= <process label><command list> 
<process label> ::= <empty>l<identifier>:: 

l<identifier>(<label subscript>{,<label subscript>}):: 
<label subscript> ::= <integer constant>j<range> 
<integer constant> ::= <numeral>l<bound variable> 
<bound variable> := <identifier> 
<range> ::= <bound variable>:<lower bound> .. <upper bound> 
<lower bound> ::= <integer constant> 
<upper bound> ::= <integer_constant> 

<assignment command> ::= <target variable>:=<expression> 
<expression> ::= <simple expression>j<structured expression> 

~ <structured expression> ::= <constructor>(<expression list>) 
<constructor> ::= <identifier>j<empty> • 
<expression list> : : = <empty.>·I <express ion> {,<expression>} 
<target variable> ::= <simple variable>l<structured target> 
<structured target> ::% <constructor>(<target variable list>) 
<target variable list> ::= <empty>l<target variable> 

{,<target variab+e>} • • 

<input command> ::= <source>?<target variable> 
<output command> ::= <destination>!<expression> 
<source> ::~ <process name> 
<destination> ::= <process name> 
<process name> ::= <identifier>j<identifier>(<subscripts>) 
<subscripts> ::= <integer expression>{,<integer expression>} 

<repetitive command>. : : == *<al tei:nati ve command> 
<alternative command> ::~ [<guardecl command> 

.{□ <g·uarded command>}) 
<guarded command> ::= <guard>--><command list> 

I (<range>{,<range>}}<guard>--><command list> 
<guard> ::= <guard list>l<guard list>;<input command> 

!<input command> • 
<guard list> ::~ <guard element>{;<guard element>} 
<guard ~lement> ::= <boolean expression>l<declaration~ 

A CSP program is a collection of disjoint processes each·of 

which is organized by a list of commaods. Commands can be 

classified into two types: structured commands and simple 

commands. The members of simple commands are the null command, 

the assignment command, the input command and the output command. 

The members of structured commands are the alternative command 

and the repetitive command. 

A command specifiei the behavior of a device executing the 

command and returns one of the two values "success" or "fail" 
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when it is executed. If the command is executed and returns 

"success", it changes the states of the process ( or the 

processes) ~nvol ved. l'f t;he command returns "fail 11, the execution 

of the whole system ab·orts. 

A null command, ~hich is denoted by "skip", does nothing and 

never fails. 

An assignment command sr;>eci fies evaluation of its 
'> 

expression, and assignment of the denoted value to the target 

variable. A simple targ,et variable ina_y have assigned to it a 

simple or a structured value. A structured target variable my 

have assigned tp it a structured value, -with the same 

constructor. The effect of such assignment is to assign to ~ach 

constituent simpler variable of the structured target the value 

of the corresponding component of the structured value. Thus~ the 

value denoted by the target variable, if evaluated aft~r a 
. ' 

successful ~ssignment, is the same as the value denoted by the 

expre~sion, as evaluated before the assignment. 

An assignment fails if the value of its expression is 

undefined, or if that value does not match the target variables, 

in the following sense: A simple target variable matches any 

value of its type. A structured target variable matches a 

structured value, provided that: 

(l) they have the same constructor, 

(2) the target variable list is the same length as the list of 

components of the value, and 

(3) each target variable of the list matches the. correspondin~ 

component of the value list. A structured value with no 

components is known as a ,, signal." 

Input and output commands specify communication between two 
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processes. Communication' ~ccurs between two processes when 

(1) an input command-in one process specifies as its source the 

process name of the oth~r process; 

(2) an output command iri the other process specifies as its 

destination the proces~ _name of the first process; and 

(3) the target variable of the input command matches the value 

denoted by the expression of the ou~put command. 

On these conditions, the input and output commands are said to 

correspond. Commands ; • ·which correspond are executed 

si~ultaneously, and their effect is to assign the value of the 

expression of the output command to the target variable of the 

input command. 

An input command fails if its source is terminated. An 

output command fails if its destination is terminated or if its 

expres~ion is .unde:fi.ned. 

The requirement of synchronization of input and output 

commands means that the process which beco~e ready to communicate 

first have to be delayed its execution until the corresponding 

command in the other process also becomes ready, or the other 

process terminates. It is possible that the delay will never be 

ended, that is a deadlock. 

A set of guarded commands constitutes an alter~~tive or a 

repetitive command. A guarded command can be executed OflY if the 

execution of its guard does not fail. Firsi its guard is executed 

and then its command list is executed. A guard is e.xecuted by 

execution of its constituent commands from left to righ_t. Boolean 

expressions are evaluated: if it denotes false, the guard fails; 

but an expression that denotes true has no effect. A declaration 

introduces a fresh variable with a scope that extends from the 
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\ 

place of the declaration to the end of the·· 9uraded command. An 

input command at the end of a guard is executed only if and when 

a corresponding output command is executed. 

An alternative command specifies execution of exactly one of 

its constituent guarded commands. Consequ_ently, if all guards 

fail, the alternative command fails. Otherwise an arbitrary one 

with successfully executable guard is selected and execu~ed. 
')· 

A repetitive command specifies as many repetitions as 

possible of its constituent-alternative commana:, Thus, when all 

guards fail, the repetitive command terminates with no effeet, 

with returning "success." Otherwise, the alternative command is 

executed once and then the-whole repetitive command is executed 

again. Consider a repetitive command when all its true guard list 

end in an input guard. Such a command have to be delayed un-ti 1 

either 

{l) an output. command corresponding to one of the input guards 

becomes ready, or 

(2) all the sources named by the input guards have terminated. 

In case (2), the repetitive command terminates. If neither event 

ever occurs, the process fails in deadlock. 

2.1.3 Examples of CSP Programs 

In this section, examples of descriptions of algorithms in 

CSP are shown. 

(1) Subroutines (Procedures) 

The following is an example of subroutines, which receives x 

and y from proces~ X and returns (x div y) and (x mod y). 
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... ······· .......... .. .... .... ·-· -·· ... -----

/* a solution of Knight's Tour in CSP */ 
[TRY(i:2 .. NSQ):: 

1·1 

board: (N, N) integer; 
x, y, u, v, k: integer; 
*[TRY(i-l)?(x,y,board) --> 

k : • 1; 
* [k<=8 --> 

nextplace! (x,y,k); 
nextplace?(u,v); 
[l<=u;u<=8; l<=v;v<=B; board(u,v)•0 --> 

board(u,v) :=_ i; 
TRY(i+l) ! (u,v,board); 
board (u,v) := 0; 

0u<l;8<ui v<l;S<v; board(u,v)< >0 --> 
skip 

·] ; 
k : = k+l 

TRY(l):: 
board: (N,N) integer; 
j, k;integer 
j : - 1; 
*(j<=N --> 

k : '"' 1; 
*[k<=N --> 

board(j,k) := 0; 
k := k+l 

] ; 
j := j+l 

] ; 
j : = l; 
*[j <= (N+l)/2 --> 

k : "' j; • 
*[k <= (N+l)/2 --> 

board(j,k) := 1; 

J ; 

TRY (2) ! (j ,k,board); 
board(j,k) := 0; 
k := k+l 

j := j+l 

- 10 -



/* 8-Queens Problem in CSP*/ 
[TRY(i:l. .8):: 

A: (1. .8) boolean; B: (2 .. 16) boolean; 
c: (-7 .. 7} boolean; X: (1.. 8) integer; 
*[TRY(i-l)?(A,B,C,X) --> 

j:integer; j:=l; 
* [ j < = 8 ; A ( j ) ; B ( i + j} ; C ( i-j) --> 

X(if :=-j; 
A(j) := false; 
B(i+j) .:• false; 
C(i-j) :• false; 
TRY ( i + 1) ! (A, B , C, X) ; 
A(j} := true; 
B ( i + j l : .,. true; '' 
C(i-j) := true; 
j : = j+l J) 

11 
TRY (0') : : 

11 

A: (1. .8) boolean; B: (2 •. 16) 
C: (-7 .. 7) boolean; X: (l .. 8) 

boolean; 
integer; 

i:integer; 
i:=l; *[i<=8 --> 
i:~2; *(i<~l6 --> 
i:•-7;*[i<=7 --> 
i:=l; *(i<=8 --> 
TRY (1) ! (A,B,C,X) 

A(i) :=true; 
B (i) :-:true; 
C(i) :=true; 
X (i) ·:=0; 

i:=i+l]; 
i:=i+l]; 
i:=i+l]; 
i:=i+l]; 

TRY ( 9) : : 
A: (1. .8) boolean; B: (2 .. 16) 
C:(-7 .. 7) boolean; X:(1..8) 
*[TRY(8)?(A,B,c~x) --~ 

PRINT!X ) 

(5) Description of a Sorter 

boolean; 
integer; 

The following program describes a sorter which sorts an • 

array of integers. 
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11 

11 

/* a description of a sorter in CSP*/ 
sorter(i:l .. MAX) :: 

num, ord, next, ~rdnext: integer; 
sorter(i-l)?(num,~rd) --> 

*(sorter(i-l)?{ne~t,ordnext) --> 
( num>next ~->or~:= ord+l 
num=next -~> skip 
nurn<next -~> ordnext := ordnext+l 

) ; 
sorter ( i+l) ·1 (next, ordnext) 

] ; • 

. source! (nurn,ord) 

sorter(a) :: ~ 
nurn, ord, next, ordnext: integer; 
source?(nurn,ord) --> 

*[source(next,o~dnext) --> 
[ nurn>next -->· ord :~ ord+l 
nurn=next --> skip 
nurn<next --> ordnext := ordnext+l 

) ; 
sorter(l) ! (next,ordnext) 

] ; 
source! (nurn,ord) 

source :: 
a: (0~.MAX)integer; i, j, num, ord: integer; 
i := 0; 
*[i<=MAX; input?a(i) ..... -) 

sorter (0) ! (a'(i) ,0); 

f; 
i := i+l 

j : = 0; 
* ( j< i- --> 

sorter(i)?(num,ord); 
a (ord) := num; 
output!a(j); 
j := j+l 

J ; 
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2.2 Coroutines 

A set of coroutines (11) is the target of transformation 

explained in the following chapters. In this section, definitons 

of courintes and semicoroutines (59}, a restricted kind of 

coroutines, are given. The targ~t of our transformation, a 

concrete language with coroutine facility, is described in 

Chapter 4. 

A coroutine is defined as a routine (subprogram) which has 

the following two features: 

(1) the values of the variables local to the routine are retained 

between successive activations of the routine, and 

(2) when the control reenters the routine, the execution resumes 

at the point where i-t lef_t off last time. 

A semicoroutine, a restricted kind of coroutines, is defined as a 

routine which satisfies (1) and (2) above and, in ~ddition, 

(3) a semicoroutine must be activated by a caller to wh-ich it 

returns the control on completion of its task. 

2.3 Graph Theory 

In this section, terms in graph theory necessary to 

understand the discussions given in the following chapte~s are 

defined; definitions of the terms are due to (32]. 

A DIGRAPH D consists of a finite set V of POINTS and a 

collection of ordered pairs of distinct points. Any such pair 

(u,v) is called an ARC or DIRECTED LINE and will usually be 

denoted by uv. The arc uv goes from u to v and is INCIDENT with u 

and v. We also say that u is ADJACENT TO v and vis ADJACENT FROM 

u. The OUTDEGREE od{v) of a point vis the number of points 

adjacent from it, and the INDEGREE id(v) is the number adjacent 
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to ·it. 

A (DIRECTED) WALK in a digraph is an alternating sequence of 

points and arcs, v0, xl, vl, ... , xN, vN in w~ich each arc XI is 

vI-1 vI. The LENGTH of such a walk is N, the number of 

occ.urrences of arcs in it. A CLOSED WALK has the same first and 

last points and a SPANNING WALK contains all the points. A PATH 

is a walk in which all points are distinct; a CYCLE is a 

nontrivial closed walk with.all points distinc~ (except the fiist 

and la.St). If there is a path from u to v·, then v is said to be 

REACHABLE FROM u, and the DISTANCE, d(u,v), from u to vis the 

length of any shortest such path. A SEMIWALK is an alternating 

sequence v0, xl; vl, ... , xN, vN of points and arcs, but each arc 

xI may be either vI-1 vI or vI vI-1, A SEMIPATH, SEMICYCLE, and 

so forth, are defined as expected. A digraph is STRONGLY 

CONNECTED, or STRONG, if every two points are mutually reachable; 

it is UNILATERALLY CONNECTED, or UNILATERAL, if for any two 

points at least one is reachable from the other; and it WEAKLY 

CONNECTED, or WEAK, if every two points are joined by a semipath. 

A STRONG COMPONENT of a digraph is a maximal strong 

subgraph. Let sl, s2, ... , sN be the strong components of a 

digraph D. The CONDENSATION D* of D has the strong components of 

D as its points,· with an arc from sI to sJ whenev·er there .is at 

least one arc in D from a point of· sI to a point in ·sJ. 

An ~CYCLIC digraph contains no directed cycles. A SOURCE in 

o is a point which can reach all others; an OUT-TREE is a digraph 

with a source having no semicycles. 
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3. overview of Transformation 

In Chapter 4, the target language of the transformation is 

described and in Chapter 5 through Chapter 7, three kinds of 

algorithms for transformation of CSP programs into coroutines are 

described. In this chapter, a general methods which are common to 

' ' 
those three algorithms and also the differences of those three 

algorithms are presented. 

All the three algorithms in the following chapters transform 

CSP programs in the following manner: 

(1) a process of a CSP program will be transformed into a 

coroutine, 

(2) a special routine called scheduler is introduced to manage 

the selection and the execution of those coroutines, 

(3) each command of a process, except for input and output 

commands, will be transformed into the same command of the target 

coroutine, 

(4) commands which transfer the control of the execution is 

introduced, 

(5) globally accessible variables are introduced; in those 

variables, values of the messages to be P.assed, types of ·the 

messages to be passed, and states of the processes are stored, 

and 

{6) communication among processes are realized through the global 

variables: a sender of a message first writes the value and the 

type of the message there, and then the receiver of the message 

reads and assigns the value into the target variable of the 

message. 

we compare the three algorithms for transformation described 

in chapter 5, 6 and 7. The first difference of those three 
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algorithms to be discussed is the range of CSP programs to which 

those algorithms can be applied. The first algorithm, which is 

described in Chapter 5, can be -applied to any kind of CSP 

programs. on the other hand, the second and the third algorithms, 

which are described in Chapter 6 and Chapter 7 respectively, can 

only be applied to CSP p_rograms that satisfy certain conditions. 

The second algorithm can be applied to CSP programs which do not 

contain any input guard. The third algorithm can be .applied to 

CSP programs which satisfies three ,:onditicms stated in terms of 

two graphs which represents the form of communication among 

processes. 

Concerning about efficiency of the execution of transformed 

programs, we can say the following. The duty of the scheduler, 

the special routine that manages the execution, is the he~viest 

in the programs transformed according to the first algorithm. In 

those_ programs, every coroutine has to be . activated by the 

scheduler every time it is activated. In programs transformed 

according· to the second algorithm_, once the scheduler activates a 

coroutine, the execution can proceed, without returning the 

control to the scheduler, as far as the execution reaches the end 

of the coroutine. The control flows among coroutines which must 

be activated for the execution of the first coroutine. Programs 

transformed according to the third algorithm are executable most 

efficiently. The only thing the schduler has to do is to activate 

, . a special routine called source which leads the exeGution. The 

control flows among processes almost in the same manner as in the 

programs transformed according to the second algorithms but there 

is no need for the scheduler to activate other processes after 

receiving the control again from the source; the execution 
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terminates. 

For the sake of convenience, in the following chapters of 

this thesis, constituents of the target of transformation, 

coroutines, will also be -called processes; we use the words 

processes and coroutines interchangeablly when we discuss the 

target language. 

- 17 -



4. Targ··et of Transformation: A Coroutine Language ASL 

The target language of transformation, which we call ASL, is 

defined in this chapter. AS stated in Chapter 3, commands which 

are not related to input or output commands are borrowed from CSP 

preserving their syntax and semantics. Thus, nondeterminism is 

also contained in this language. Commands related to input or 

output of processe~ are changed. Moreover, commands which express 
.,, 

fransfer of the control among routines and global variables to be 

used for 1 communication of processes are introduced. 

In Section 4.1, we describe auxil.iary variables to be 

introduced. In Section 4.2, syntax and semantics of commands of 

ASL are formally described. 

4.1 Auxiliary variables 

In .order to. explain the meanings of· the commands of ASL, we 

introduce auxiliary variables which do not appear in the text of 

ASL programs. Each process (coroutine) has several globally 

accessible variables other than local variables which are 

inaccessible from other processes. One of those is a variable 

which contains the state of the process and is reffered by 

p.status, 

where pis the name of a paticuler process~. ~he variable p.status 

contains one of the followi~g value: 

(1) ready {denoted by RE) -- which indicates that the process is 

ready to proceed its execution if it is activ?ted, 

(2) output waiting (denoted by OW) -- which indicates that the 

process was suspended when it tried to output a message and can 

not proceed its execution unless the ·corresponding process 

reaches the place of the rendezvous and receives the message, 
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(3) input waiting (denoted by IW) -- which indicates that the 

process was suspended when it tried to input a message and can 

not proceed its execution unless the corresponding process 

reaches the place of the rendezvous, 

{4) input waiting in guard (denoted by !WIG) -- which indicates 

that the process is suspended when it tried to execute an 

alternative or a repetitive command which contains input guards 

but none of the guards suceeded, and 

(5) terminated (denoted by TE) -- which indicates that the 

process has already finished its execution. 

Other t·han • status explained above, for each process, we 

prepare globally accessible variables whose names and functions 

are stated in the following: 

(1) message box (denoted by MSGB) which contains the·value of 

of the message to be passed ftom the pr:ocess, 

(2) message type {denoted by MSGT) -- which contains the type of 

the message to be input or output at an input or an output 

command, 

(3) partner (denoted by PTNR) -- wbich contains the name of the 

partner of the communication to be taken place at the time, anJ 

(4) caller -- which contains the name of a process which 

activated the process ~ya call command or a resume command which 

will be explained in ~he next sebsection~ We refer those 

variables as 

<process name>.<name of the ~ariable>. 

For clear explanations of the mechanisms of the execution of 

ASL, we introduce one more common variable named executing­

process and a local va·riable named local-sequence-control. The 

variable executing-process~ which will be denoted by EXECP, 
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contains the name of the process to be executed next. The 

variable local-sequence-control, which will be denoted by LSC, 

points the command of the pro~ess to be executed next. We assume 

that the processer of ASL programs picks the content EXECP before 

executing .a command if necessary, and then executes a command 

pointed by the LSC of the process. We also assume that the 

content of the LSC is renewed properly after executing the commnd 

and it is retained between succesive acctivations of the process; 

i.e. processes behave as co~outines. In the following sections, 

we define the meanings of ·commands of ASL using those variables 

defined in this section. 

4.2 Commands of ASL 

Syntax and semantics of commands of ASL is described by 

using the variables defined in the previous section. 

In order to transfer the control of the execution, we 

introduce control commands as follows: 

<control command> 

<call ·command) 
<return command) 
<resume command> 
<status> 

·A ca,l 1 command 

,. 
call q (ST) 

: : = <call ·command> 
<return command> 
<resume command> 

.. - call <process name> (<status>) 
• ·= return (<status>) 
.. - resume <process name> (<status>) 
::= RE 11w I ·!WIG I ow I TE .. 

in a process p, transfers the control of the execution to the 

named process q, • sets the status of p to ST (here ST is one of 

the following: RE, IW, IWIG, OW, or TE), and assigns the name of 

th~ activating process, p, into q.caller, that is: 

• call q (ST) /* in p */ 
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=q· caller 
p.status 
EXECP 

:c 

:= 
~= 

p; 
ST; 
q . 

The following return command 

return ( ST ) 

in a process p returns the control to the caller of p ano sets 

the status of p to ST, that is: 

return ( ST /* in p */ 

·=p.status 
EXECP 

: ::: ST; 
: • p. calle.r. 

The following resume command 

resume q (ST) 

in a process p activates the process p· and sets the p.caller if 

p. cal 1° is not g. The ·command also sets the status of p to ST. 

That is: 

resume q ( ST ) /* in q */ 

=p.status := ST; 
[p.caller = q --> skip 
up.caller <>q --> q.caller := p ); 
EXECP : = q 

Message commands which take charge of message passings have 

the following form: 

<message command> ::; <receive command> 
<send command> 

<receive command> 
::= receive (<targetvariable>) from <process name> 

<send command> 
::= send (<expression>) to <process name>. 

A receive command assigns the value of the message to the target 

variable and returns the value success as the result if it can 

receive the correponding message. It returns the value fail if it 

can not receive the message. A send command writes the value of 
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the expression in MSGB, writes the type of the expression in MSGT 

and changes the status of the partner of the rendezvous if it is 

suspendea:and the message corresponds. 
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5. Algorithm for Transformation (1) 

Three algorithms for transformation are described in 9hapter 

S through Chapter 7. In this chapter the first algorithm which 

can be applied to any kind of CSP programs are presented. Its 

informal description is given in Section 5.1 and the rigorous 

description of this algorithm is given in 5.2. 

5.1 overview of the First Algorithm 

As stated in Chapter 3, every process of a CSP program is 

transformed into a coroutine and each command of each process -is· 

transformed into the same command except for input and output 

commands. A special routine called scheduler is added to those 

coroutines and it always k~eps the status of every process and 

control the execution. 

The scheduler repeats the foll~wing cycle until no process 

is executable. 

(1) The scheduler chooses and activates a process· which is 

executable·; 

(2) The chosen process executes its commands as far as it can 

proceed (the process can not proceed when it can not send or 

receive a message at an input or an output command, or when it is 

terminated.); 

(3) The suspended process returns the control to the scheduler. 

The mechanism of the message passing is as follows. In 

principle the process which reaches the place of the rendezvous 

first writes the type of the message (and the value of the 

message if the process is the sender of the message) in globally 

accessible space, then the other process which reaches the input 

or the output command checks the correspondence of the message, 
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:. 

U.::::1 .. Q. BE;..; q~ ?vt --> CL~, 

where BE and CL stand for Boolean expressions and command list. 

respectively. 

( 4) ELSE in 

[ tl Z::.l" L 
ELSE 

BE t --> CL,t 
-->CL) 

is defined as ELSE= A.~ (not BE~). 

An output command in a process q which has the form 

pie 

is transformed into the following commands: 

send (el top; return (OW). 

An input command which is not appearing in a guard of a-process p 

and has the form 

q?v 

is transformed into the following command: 

[receive 
ELSE 

(v) from q --> skip 
--> retu~n(IW); receive (v) from q 

) 

An alternative command with input guards in a process p 

which has the form 

ID ~-.:.l,, t BE~ ; q;; ?v.t --:-> CL~ 
Olli.::.tt\.:~.-.BE;: --> CL;: 

is transformed into the following: 

(lh~1,,'l.. BE~;receive(v~) from qtt --> CLJ: 
tlt\l::.T,-\i .. ¼'r\BEt --> CLA 
Ul\h, not BE;: or not receive(v_z) from q~).;lh_~\,,'MBE,( --> 

return ( IWIG) ; 
([1q_.Q receive(v.A) from q~ --> CL~ l 

A repetitive command with input guards in a process p.which has 

the form 
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is transformed into the following: 

flag: boolean; flag := true; 
*('[J4-.. 1 .. t_ flag; BE;:;; receive(v;.) from q~ --> CL~ 
UU l"'-!eil.,1"' flag; BE A --> CL i,. 
i]flag;,\~ 1 ( not BE~ or not receive(v,:) from q~); 

i\J\ ( not BE,t )· --> rflag: boolean; rflag := true; 
*.[ flag --> 

[rflag --> return (IWIG) 
Dnot ~flag--> skip } 
DO t=h-~ B~; receive (v~ from q_.;--> CL; 
t\Q ~-=-t'\\.,.,...BE ,. --> CL~; rflag : = false 
U ELSE--> flag := false 
] 

At the end of each process, we insert 

return (TE) 

to inform its termination. 
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6. Algorithm for Transformation (2) 

If a CSP program to be transformed has no input guard, a 

strategy called demand driven reduces the duty of the scheduler, 

since in those cases the pair of participants of a - paticular 

communicatin is always determined uniquely. 

If a process preaches an input or an output command, the 

process transfer the control to the partner of the rendezvous. 

Jhe activated process proceeds execution, until it reaches the 

place of the rendezvous and answer the request of the activator. 

It is possible that th~ called process also activates other 

processes, however, thoie called processes can not call any 

process which is already waiting for the partner.to respond the 

request, since this indicates the presence of deadlock. Thus, if 

there does not arise any deadlock, the control must return to the 

first process p. In this .. way· the execution proceeds- until the 

process· p chosen by the . scheduler terminates and return the 

control to the scheduler. Thus, the number of the scheduler's 

choice of the process to activate decreases ~omaring with the 

first algor·i thm. • 

( 1) 

The transformation proceeds in the following manner. 

If an input command 

q?v 

appears, it is changed to 

[receive v from q --> return (RE) 
l}lot (receive v from g) --> 

call q (IW); receive v form q] 

(2) If an output command 

q!e 

appears, it is changed to 
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send (e) tog; resume q (OW) 

(3) At the end of each process 

return (TE) 

is inserted to inform its termination. 
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7. Algorithm for Transformation (3) 

rn this chapter the third algorithm for transformatin is 

presented. CSP programs which satisfy certain conditions can be 

efficiently executable. The first section of this chapter shows 

the conditions to be satisfied, the second section explain-s the 

algorithm informally, and in the last section., rigorous rules for 

transformation are presented. 

7.1 Conditions to be Satis~ied 

If a CSP program satisfies certain conditions stated in this 

section, the role of the scheduler is to only activate a special 

process ca~led sourc~ process which leads the computation~ In 

this section we first states the conditions to be satisfied, and 

then, describe the way of transformation. 

Any program in CSP that satisfies three conditions stated 

below in terms of communication graph [19) and activation graph 

can be executed without arbitrary choice of th~ prcicess by the 

scheduler. At first the communication graph Ge is defined as 

follows: 

Definition 1 (communication graph Ge). 

For a given CSP program, the COMMUNICATION GRAPH Ge is defined 

as follows: 

(1) each process is a point of Ge, and 

(2) if there is a communication (i.e. transfer of messages) from 

a process p to a prcess g, pq is contained in Ge as an arc. 

Let p be the set of processes of the CSP program, or, in other 

words; the set of points of Ge, and let Ac be the. set of arcs in 

Ge. we write as Gc=(P,Ac). The first condition to be satisfied is 
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as follows: 

Condition 1. 

Ge is acyclic. 

By this condition a partial order..<'._ can be naturally induced 

into the set of points P ~f Ge. We shall define the order of 

p,qE P as 

pq~Ac ==> 

Suppose that an exp1:ession in CSP s·atisfies the above condition. 

The next condition we take into consideration is: 

Condition 2. 

There exists a process sE.P such that for any -pEP, P::6;S or 

s~p holds. 

The process which satisfies 'the above condition may. not be 

unique, I.f there exists more than one process, we select an 

arbitrary .one and fix it from now on. 

Definition 2 (source process s). 

we select a process which satisfies Conditin 2 and fix it. we 

call the process the SOURCE (PROCESS) .of P, which will be denoted 

by s. 

Another kind of graph called activation graph is now 

defined. 

Definition 3 {activation graph Ga). 

If Condition 1 and 2 are satisfied, the ACTIVATION GRAPH 

Ga=(Pa,Aa) of a CSP program can be defined as follows: 
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{l) Pa=P (the set of points is the same as that of Ge; thus we 

use P instead of Pa), and 

(2) pq~ Aa <==> qpEAc { if q~ s) 

pq€Ac (if s~p). 

Note that indegree of the graph Ga of the source process sis 0. 

The following proposition is proved easily. 

Proposition 1. 

Ga is acyclic. 

By this proposition, a new partial order (P~) which is 

different from (P,.:s'.,.) is induced; it represents the order of the 

activation. 

The last condition to be satisfied is stated in terms of the 

activation graph Ga as follows: 

Condition· 3. 

Ga is an out-tree. 

Remark. 

The above condition is equivalent to the following one: 

Condition 3'. 

with respect to Ga, the indegree of the source.sis 0 ana the 

indegrees of all other processes are 1. 

For convenience, we will define several terms. 

Definition 4 (producer and consumer). 

A process pis said to be a PRODOCER (PROCESS) if p4-s, and is 

said to be a CONSUMER (PROCESS) if s4-p. 

- 31 -



Definition 5 (parent, son, ancestry and descendant). 

For each p E:P, we define the fqllowing: 

(1) if qpf;Aa, g is said to be the parent of p (which is uniquely 

defined), 

(2) if pqEAa, q is said to be a son of p, 

(3) {qG-P I q~p} is said to be ancestry of p, and 

(4) [qGPlp~g} is said to be descendant 9f p. 

7.2 overview of the Third Algorithm 

·Those programs which satisfy above three. conditions can be 

executed in the following manher. 

(1) The shceduler activates the source process s. 

(2) The source process makes all the prbducer proce5ses be ready 

to send messages iri the following way: 

{2-1) it activates each of its sons that i's a consumer, and 

then. 

(2-2) each of those sons also makes their sons be ready to 

send messages by activating them,. 

(2-2) proceeds until all the producers are activated arid become 

ready to send messages to their parent processes. 

(3) The computation proceeds by the leading of the source process 

preserving ·the condition .that all the producer processes are· 

always be ready to send messages unless they are terminated, 

(Note that the result of the input guards can be always 

determined since all the producers are ready to send messages.) 

(4) When the source process ·is reached its end, it broadcasts its 

termination to all the consumers in the same manner as (2-2). 

(5) All . the consumers ch~nge their status to "terminated,,- and 

return the control to their parents. 
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(6) The source process gets the control again and returns it to 

the· scheduler. 

(7) The execution terminates. 

7.3 Description of the Third Algorithm 

Let P be the set of processes o·f a CSP ·program to be 

transformed. We transform a process p E P in the following manner . 
., 

(1) If p~s, insert the following call commands at the top: 

call q 1 (RE); .. A, call qi\'\ (RE), 

where each qt is a son of p. 

(2) A command which is not or does not contain any input or 

outpu_t command is not changed. 

(3) An input command which does not appear in guard is changed as 

follows: 

(3-1) i£ p~s,·.anrl .input command 

g?v 

is changed to· . 

receive (v} from q; call q (RE), 

and 

(3-2) if s~p, an input command 

q?v 

is change to 

receive (v) from q; return (RE). 

(4) An output command is changed as follows: 

(4-1) if P4-s, and output command 

q!e 

is changed to 

send (e) tog; return {OW), 

and· 
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......... -·- ... ·- --- ·- ,- - - - - - •. - - .. - . -

(4-2) if s..Lp·, an output command 

qle 

is changed to· 

send (el to q; call q (OW). 

(5) An alternative command with input guards in p....(.s 

[U,;:;..1,,e.,. BE.[; g ,c?V t\' --> CL,.' 

nnt-=.e-ti .. ""' BE~ --> CL-\ 

is changed to ~ ... 

(O~ .. ~ BEr;- receive (vA°) from g.,.,., --> 
call qA (RE); CL~ 

U11t"-tt\,t'M BE A --> CL A J • 

Ifs~, the command 

call g (RE) 

in the above is replaced by 

return (RE). 

(6) An repetitive command with input guards in p~s 

* [·tl.t ,.,, .. .e_ BE :t-: q ,t ?v;;: -- > CL A 
lYll~~.t-tt .. ~ BE) --> CL ,i. J 

is changed to 

* CD:,..::..1.,.e.__ BE;:-; receive (v-{) from q ;:--> 
can q- (RE); CL.( 

rmA -=it<.,...... 8E,e --> CL A ] • 

If s~p, the command 

call q (RE) 

in the above is replaced by 

return (RE). 

(7) If p~s, the following command is inserted in the end: 

return (TE). 

(8) If 89, the following command is inserted in the end: 

call q
1 

(TE); ... ; call gM (TE); return (TE), 

where each g~ is a son of p. 
,A 

The following is an example of this algorithms of 
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transformation. A CSP program shown in 2.1.3 of 8-Queens Problem 

is transformed as follows, where TRY(9) is chosen as the source 

process. 

[TRY ( i: 1.. 8):: 
A: (1. .8) boolean; B: (2 .. 16) boolean; 
C:(-7 .. 7) boolean; X:(1..8) integer;. 
call TRY(i-1) (RE); 
*[receive( (A,B,C,X) ) from TRY(i-1) --> 

call TRY (i-1) (RE); 
j:integer; j:=l; 
*[j<=B; A(j); B(i+j); C(i-j), --> 

X(i) := j; 
A(j) := false; 
B(i+j) := :false; 
C(i-j) := false; 
send( (A,B,C,X) ) to TRY(.i+l); 
return; 
A(j) := 
B(i+j) := 
C(i+j) :.:: 
j : = j+l 

true; 
true; 
trti-e; 

) ] 

11 
TRY(0):: 

A: (1.. 8) boolean; B: ( 2 .. 16) boolean; 
C: (-7 .. ?)boolean; X: (1. .8) integer; 
i:integer; 
i:=l; *[i<·;.~ --> A(i):=true; 
i:=2; -*[i<=l6 --> B(i):=true; 
i:=-7;*[i<=7 -->- C(i):=true; 
i:=l; *[i<=8 --> X(i):=0; 
send( (A,B,C,X) ) to TRY(l); 
ret.urn (OW) 

i:=i+l]; 
i:=i+l]; 
i:=i+l]; 
i:=i+ll; 

11 
TRY ( 9) : : 

A: (1..8) boolean; B: (2 .. 16) boolean; 
C: (-7 .. H boolean; X: (1. .8) integer; 
call TRY(8) (RE); 
*[receive( (A,B,C,X)) from TRY(8) --> 

call TRY(8) (RE); 
send{ X) to PRINT; call PRINT (OW) 

- 35 -



8. Comparison with Related Works 

In this chapter, we compare the method of. transformation 

presented in this thesis with other related works: T. Katayama's 

work [44,45) of translation of attribute grammars [48) into 

procesures, A.N. Habermann and z:R. Nassi's work [33) of Ad~ 

tasks {78) into procedures and T. Hagino's work [28) of 

transformation of CSP programs into ~equental programs. 

8.1 Gomparison with Katay~ma's Method 

Katayama's IDethod for translation of attribute grammers into 

procedure~ is designed· for effective evaluation of value bf 

attributes and its outline is as follows [44). 

Let X be a nonterminal symbol of ·an attribute grammar 

G=(Vn,Vt,P,S), where Vn, Vt, P and Sare a set of nonterminal 

symb~ls, a set of terminal symbols, a set of -production rules and 

the start symbol ~espectively, and let s be a synthesized 

attribute of X. we associate with each pair (X,s) a procedure of 

the form 

R (Vl, ... , Vm, T; V); 

where Vl, ... , Vm are parameters corresponding to the inherited 

attributes which are necessary to evaluates, Tis an derivation 

tree and Vis a parameter which corresponds to s. Thus parameters 

to the left (right) of ';' are input (output) .pa_rameters. This 

procedure R is intended to evaluate the synthsized attributes 

when supplied with the values of attributes which are necessary 

for the evaluation of s and a derivation tree T. When we are 

given the initial derivatin tree T0 and a synthesized attribute 

s0 of the initial symbol S, we begin evaluation of s0 by 

executing the procedure call statement 
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call Rl (T0;V0), 

where V0 is a variable , corresponding to s0. The execution 

proceeds, recursively caliing the procedures which are necessary 

• to evaluate sunthesized attributes, until the desired value·V0 is 

computed. 

Attribute grammar _systems, as well as CSP, can be considered 

useful means of description of algorithms. Thus, motivations of 

Katayama's method and the method presented in this thesis are 

quite similar. Since an attiibute grammar is an augmented form of 

a context·free grammar, there are strong relations among symbols 

by means of production rules of the grammar, and usually those 

gi:ammers contain recursiveness by nature. Thus, it is natural to 

.evaluate the values of the attri.butes by '.3Ctiv·ating mutually 

recursive procedure. Among processes ~f general CSP programs, 

however, no such relation can be found. Hence, ·the method taken 

by Katayama can not be applied to CSP programs directly. 

8.2 Comparison with Habermann and Nassi's Method 

The Habermann-Nassi Method for efficient implementation of 

Ada tasks is a method which transforms the calls of entries by 

tasks into simple procedure calls. Its outline is as follows 

( 77-] . 

In their method, each task with entries is transformed into 
<·. 

a procedure and each entry is embedded as a block of the 

procedure. However, it is not sufficient to replace .the body of 

an entry by the body of a corresponding procedure, since in that 

case demands from other tasks which originally have tobe delayed 

will succeed at once. To avoid this error, we prepare locks for 

each entry and control them as if the control· proceeds 

- 37 -



sequentially (coroutine like way) through the task. We show an 

simple example which is adopted from [77], where four semaphores 

are introduced to control the execution. 

task body T is 
begin 

loop 
accept·El do 

- 1 -
end E.l; 
accept E2 do 

- 2 -
end E2; 
accept E3 do 

- 3 -
end E3; 

end loop; 
end T; 

Before Transformation 

S1 :z l; 
S2,S3 := 0; 
S0 := 0; P(S0); 
El: P(Sl); 

- 1 -
V(S2); 
return; 

E2: P (S2); 
.- 2 -. 

V (S3); 
return; 

E3: P(S3); 
..:. 3 -

V(S1); 
return; 

After Transformation 

The ·mechanisms of rendezvous of two tasks in Ada are 

strongly in£itienced by CSP, however, the roles of tasks involved 

in a r.endezvous ar.e not symmetric; a task calls and the oth_et; 

task ~ccepts the request wh~n it reaches an appropriate entry. 

There is no need to write explicitly the name of the task with 

which an entry is concerned. These phenomena enable the method 

stated above effective. As for CSP, the same method can not be 

applied directly, since there is no caller-callee relation 

between any two processes. 

8.3 Comparison with Hagino's Method 

In (28], Hagino completely changes CSP programs into 

sequential programs, i.e. there is only one routine after the 
, 

transformation. The transformation proceeds in the way shown 

below, where 

(<command list>} 0 (<command list>) 
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denotes the result of the transformation. 

A CSP program 

[P:: x:=l; Q!x; Q?x 
Q:: P?y; y:=y+2; P!y 

will be transformed in the following way. 

(x:=l; Q!x; 
X: : = l ; ( Q i· X ; 

x:=l; y:=x; 
x:=l; y:=x; 
x:=l; y:=x; 

Q?x) (±) (P?y; y:=y+2; P!y) 
Q?x) (±) (P?y; y:=y+2; P!y) 
(Q?x) ff) (y:=y+2; Ply) 

y:=y+l; (Q?x) {±) (Ply) 
y_: ~y+l; ..x: =y .. 

This method of trnsformation is proposed for verifications 

of CSP porgrams and the ef-f i·ciency of transfo-rmation ·is of 1 i ttle 

concern. In fact, the procedures have to be executed are 

complicated and the meanings of the result of the. transformation 

is almost impossible to_ understan9. on the other hand, the method 

taken in thfs €hesis preserves ·the structure of the processes and 

the rules of transformation are simple and· efficiently 

executable. 
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9. Conclusion 

As a way to solve the probl~m of effective scheduling of 

processes of CSP, three a~goiithrns for transformation of CSP 

programs into coroutines are presented; The first algorithm is 

simple and can be applied to general CSP programs but not 

efficient, the other two algorithms can only be applied to 

restricted classes of CSP programs but rno~e efficient than the 

first one. 

Comparisons with thr-ee other:· r-elated works are also 

presented. The method taken in this thesis has similarity with 

each of those works, but methods of those works can not be 

applied directly to the problem of efficient scheduling of 

processes of CSP . 

.. 
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